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ABSTRACT

In their studies of transversely isotropic media, I. Tsvankin and his co-workers
have shown the benefits of expressing the P-wave normal moveout velocity in
terms of the zero-offset ray parameter instead of the phase angle, but left for
future work the actual task of doing this. Here, explicit formulas are given for
both the P-wave phase velocity and normal moveout velocity in terms of the ray
parameter. Various results of Tsvankin and others are rederived and, in some
cases, extended, in a uniform manner using these explicit results.

The small ray-parameter expansion of the moveout velocity is valid for dips
up to approximately 15°. In this regime, an analytic solution for the anisotropy
parameter 7, important for time-related imaging is given in terms of observations
of moveout velocity for two different values of the ray parameter.

INTRODUCTION

In their studies of transversely isotropic media, I. Tsvankin and his co-workers
have shown the benefits of expressing the P-wave normal moveout velocity in terms
of the zero-offset ray parameter instead of the phase angle. Here, explicit formulas
are given for both the P-wave phase velocity and normal moveout velocity in terms
of the ray parameter. Various consequences of these results are drawn, including an
analytic solution for the anisotropy parameter 7, important for time-related imaging
is given in terms of observations of moveout velocity for two different values of the
ray parameter.

Throughout this study, Mathematica was used extensively to derive and check re-
sults. In particular, the Mathematica package, Thomsen.m (Cohen, 1995), was used
to convert equation (3) to Thomsen notation, in equation (5), and to obtain various
results in the limit of weak transverse isotropy. Similarly, the use of Mathematica
facilitated computing symbolic derivatives, series expansions, etc.
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PHASE VELOCITY AS A FUNCTION OF RAY PARAMETER

Begin with the formula for P-wave phase velocity in terms of dip 6 (Tsvankin,
1994), equation(6):

2pV2(0) = (Cy1 + Cyq)sin? 0 + (C33 + Ca4) cos? 8
+ { [(C11 — Ca) sin?8 — (Cag — Cug) cos?]” (1)
+ 4(C13 + Caq)? sin® § cos® 0}1/2 .
Use the substitutions
p=sind/V(8), m =cosb/V(9), (2)
to rewrite equation (1) as an equation for the slowness surface:
2p = (C11 + Cua)p® + (C33 + Cag)m?
+ {[(Cu — Ca4)p® — (Cs3 — 044)7"2]2 (3)
+4(Crs + Cag)2pm2}) .

To obtain a formula for V' (p), follow the recipe given in (Alkhalifah & Tsvankin,
1995), Appendix A. Begin by converting equation (3) to Thomsen notation. After
introducing the on-axis P and S velocities, cp and cg, and the related quantities,

1 c2
k=— =1-2= 4
C2P) f C%), ()

obtain the Thomsen-notation form of the slowness surface as

2k = (2 — f)m? + (2 + 2¢ — f)p? + \/4£(26 + F)m2p? + (F (02 — m?) + 2ep?)2.  (5)

Next, solve equation (5) for m? and, from equation (2), form

V(p) = ——— (6)

VP? +m?(p) .

After some manipulations, find that V2(p) can be written as

V3(p) = AZC‘,/E : (7)
where,
A = (2- f)k—2(e - f8)p*, (8)
B = [ —dfkle—(2— o]’ +4[20(1 - f)le— )+ (e — f67] 5%, (9)
C = k®—2kep® —2f(e — 6)p*. (10)
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Before turning to some important special cases, observe the following consequences
of the definitions in equations (2):

sinf = pV(p), cosf =mV(p)=4/1—(pV)2, p?>+m?= ‘—}—2- (11)

These equations will be of great convenience in translating between representations
in phase angle and representations in the ray parameter.
Small ray parameter

First observe that for p = 0,

A = (2-fk, (12)
B = f%, (13)
C k2, (14)
so that,
oy - = Nk+fk 26 1,

Vv (0) - 2k2 - 2k2 - k - cP’ (15)

leading to the expected result,
V(0) = cp. (16)

For later purposes, we will need to know the more detailed behavior of V(p) for small
p- Introducing the dimensionless parameter,

z = (cpp)?, (17)
obtain
V(p) = cp[l+62+ ((e—8)(1+26/f) + 36%/2) 2
+((e— 8)(1+26/)(56 +2(e — 26)/ f) + 56%/2)2*  (18)
+0(z*)] .

Remark: This expansion shows that the true meaning of “small p” is that 2z =
g

(cpp)? << 1. Since V = cp, the inequality can be written as sin?f << 1, so in

dimensionless terms, “small p” represents a small dip angle 6.

Elliptic anisotropy
Next study the elliptic case (§ = €), where

A = (2-flk—2(1- f)6p’, (19)
B = [fk+2(1- f)sp*], (20)
C = k*-—2kép? (21)

3
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so that,
_ 1 _ c%
T k—26p2 71— 26chp?’

V*(p) (6 =¢). (22)

Tsvankin (1995) gives the corresponding elliptic limit value of V2 in terms of the
phase angle, 6, as
V2(0) = V@ cos?8 + V& sin? 9, (23)

where Vo = V(0) and Vg = V(x/2) in the phase angle form of V implied by equa-
tion (1). These values are readily found from equation (5). When p = 0, then
m = 1/V(0), and the equation reduces to 2/c% = 2/V2(0), so that

‘/0 = Cp. (24)
Similarly, when m = 0, then p = 1/Vqo, giving 2/c% = 2(1 + 6 + €)/ Vi, so that

Voo =cpV1+6+e (25)

which reduces to

Voo = cpV1+ 26 ((5 = 6) (26)

in the elliptic limit. This also confirms the known result that Vamo(0) = Vg for
elliptically anisotropic media.

With these results in hand, equation (23) becomes
V2 =% +26chsin? 0 = & + 26c%p*V? (6 =¢). (27)

On isolating V2, equation (22) is verified.
Tsvankin (1995) likewise gives the form

V(0) = cpy1+26sin?0 (6 =¢) (28)
for the elliptic case. Introducing the ray parameter in that expression gives
V2 = ch(1 + 26p*V?) (29)
and, once again, isolating V2 verifies equation (22).

Weak transverse isotropy

The weak TT limit of equation (7) is
VAp) & ¢ [1+2(6 + (e — )chp)hp”] (30)

or
V(p) = cp [1+ (6 + (e — 6)hp?)c2p?] . (31)
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Thomsen’s (1986) expression for this quantity expressed as a function of angle is
V(8) = cp [1 + (6cos®6 + esin? 0) sin” 6] . (32)

Tsvankin (1995) shows that this equation implies

9 p’ch 4.4
sin“ 6 = m[l + 2(6 - 5)11 CP], (33)

which, in turn, in the weak limit is equivalent to
p’V? = p’c[1 + 26p%ch + 2(e — 8)pich]. (34)

On cancelling the common factor of p?, this verifies equation (30) and hence also
equation (31).

NORMAL MOVEOUT VELOCITY AS A FUNCTION OF RAY
PARAMETER

The derivation of the normal moveout velocity as a function of ray parameter,
follows closely the corresponding derivation of its expression in terms of the ray angle
given in (Tsvankin, 1995). For convenience, some explicit references are made to
equations in this paper.

First, use equations (11) to find the following relation for dp/d#:

dsinf , dp
where, here and below, the prime notation is used for p-differentiation. Thus, we find
that

mV = cosf =

v _ ., dp _mVV'

de — " de (V) (36)
The derivation of Vno(p) begins with Tsvankin’s equation (4),
2z .. dtany
2 el
Vinalp) = 2 iy S (37)

The second component of this expression is evaluated using Tsvankin’s equation (6),
equations (11), and equation (36):

Vsinf + dg‘g—cosﬂ
V cosf — ‘fi—gsino
2 dv

%
mV?2 —de—o

tany =
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pV + m‘;—‘;

pV(pV) + m2vV’
mV (pV) — mpVV'
p(pV) +m*V’
m[(pV) — pV']
P’V +m?V' + pV
mV

V! IV2 4 pV

mV
V' +pV3

The first component of equation (37) is similarly evaluated using Tsvankin’s equa-
tion (8):

-2ﬁ = Vcosé (1 -

tan0d_V
V dé

. 9 _LmVV’
= (1 mV (pV)’)

VI
= mV? (1 _ P )
(V)

) (V)
- % (39)

Using the previous two results in equation (37), find that

9 _mV3d (V' 4pV3
Vnmo(p) - (pV)’ dp ( mV3 (40)

or, on eliminating m,
V2 )= LVIZ0V?d (V4 pve (41)
e vy  dp \v2,/1-(v)2)

Carrying out the indicated derivative gives an explicit formula for the normal moveout
velocity as a function of ray parameter:

o 1y _ 21 =pVHVV" + (3p*VZ - 2)V"2 4+ 2pV3V' + V* 5
‘/nmo(p) - (1 _p2V2)V(pV), (4 )
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Before turning to the special cases for V, note that when it is necessary to treat
the general V, it may be better to avoid a layer of square roots by writing V2 _(p) in
terms of W = V2

V2 201 —pPW)WW" + (4p*W — 3)W”2 + 4pW W' + 43

amolP) = 20— p2W)W W' + 2) 43)

Small ray parameter

First, use the two leading terms of equation (18) to obtain the approximations,
V=cp+cpop’ +0(p"), V'=2c46p+0(°), V'=256+00p%. (44)

On inserting these small-p approximations into equation (42), find that

V2o(p) = ¢ (1 +26) + O(p?), (45)
" Vamo(0) = cpv/1+ 26. (46)

Now use the next order terms of equation (18) in equation (42) to get the next
term in V2 (p):

V2. (p)=ck (1 +26+ ((—2462 +246¢e + f — 86f + 46%f + 12ef)£c—”}3)—2-) + O(Cpp)4) .

(47)
Remark: Again, the expansion shows that the true meaning of “small p” is that
(cpp)®? << 1. Since V = cp, and the error is fourth order, this means we can
interpret “small p” as meaning sin?d << 1. Numerical tests show that using the
small p series for a dip of 15° incurs about a 2% error for typical values of f and 4.

The theory discussed by (Alkhalifah & Tsvankin, 1995) suggests that it is better
to express this result in terms of the parameters V,,0(0) and
€e—6
1426

n= (48)

First introduce 7,
Virno(P) = ch(1 +26) + (ch(1 +26)(246n + f + 261 + 120f)p?) /f + O(p"), (49)

then use equation (46) to eliminate the explicit appearances of ¢ in favor of V2__(0):
P nmo

1+26/f

2 — 172
Vi) = Vino0) | (1 1 120 SE2

)v,?mom)p?) " O(V:m(mp‘*)] C(50)

The importance of the anisotropic parameter 7, is that Alkhalifah and Tsvankin
(1995) have observed, both numerically and empirically, that V2, (p) depends mainly

7
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imo(0). They exploit this reduction to surface-observable parameters to
develop time-domain seismic processing algorithms that take account of transverse
anisotropy. Equation (50) gives analytic support to the Alkhalifah-Tsvankin theory,
since the only deviation to it occurs in the ratio

_1+426/f
1426

on 7 and V2

(51)

that multiplies 7. Figures (1) and (2) show plots of this function over the ranges of
f and 6 that are relevant in practice. Observe that the function g(6, f) varies slowly
over these ranges—indeed—ignoring it altogether (i.e., replacing it by the constant
1) is usually justified—at least in the small-angle approximation.

F1G. 1. Plot of the factor g = (1 + 26/f)/(1 + 26) as a function of 6 for f = 0.7
(dark) and f = 0.8 (light).

The small-ray-parameter result in equation (50) gives a means for estimating 7
from surface observations. For example, suppose one has observations of Vamo(p) at
p = 0 and some other (not too large) value p = p;. The solution for 7 is given by

1 (V2 (p)—V2.(0)
o~ nmo nmo _1 2
L 12g( PV 0) ! (52)

where once again, in the absence of information on § and f, the factor g can be
replaced by the constant 1 without much error.

More generally, if one uses two nonzero “small p” values (that is, two separated
dips, each less than 15°), then the estimate for V2, (0) is given by

nmo

21,2 21,2
D ‘/nmo P1)—p ‘/nmo D
V2,0(0) = P2VameP) ~ PiVonolp2) (53)
P2 — P1
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F1G. 2. Plot of the factor g = (1 + 26/ f)/(1 + 26) as a function of f for § = —0.05
(dark) and é = +0.1 (light).

and the estimate for 7 is

oo L ((p? — ) (Vino(P2) — Vitmo(P1)) _ 1) _ (54)
120\ (PVino(P2) — P3ViEo(p1))?
Finally, note that the full form of the series for V2 (p) is given by
Vamo(P) = Vimo(0) [1 + €2V (08 + e4Vino (09" + -] (55)
where, as we have seen earlier,

c2=1+4+12gn~1+12y. (56)

By using the full form of equation (18), we find that
¢ =1+ 6g(6 — 5g)1+ TP ~ 1 + 67+ O (57)

f f

Here, the approximations result from replacing the factor g defined in equation (51)
by the constant 1. Note that the final term in ¢4 indicates the first serious divergence
from the theory that V2 (p) depends only on the parameters V2. (0) and 5. However,

this term is multiplied by both p? and 72, which ameliorates the effect of replacing
the f in this term by, say, 3/4 instead of the true value.

Elliptic anisotropy

Inserting the elliptic P-wave phase velocity as a function of ray parameter given
in equation (22) into the general NMO equation (42) gives at once

3 (1 + 26)
(1—(1+26)cpp?)’

Vio(p) = (58)

9
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Recognizing the quantity V;n,(0) from equation (46) gives
Vamo(0)
\/1 - 2‘/n2mo

in agreement with the result in (Alkhalifah & Tsvankin, 1995). For future use, intro-
duce the notation,

Vamo(p) = (6 =¢), (59)

Va(p) = —rmel0) - (60)
Jl - 2‘/rl2mo
for the elliptic result.
Weak transverse isotropy
Using equation (31) in equation (42) gives
2 2(6 -6 — 422
V2 (p) = lch <1+ (6+ (e )1z£6z 92+ 4z ))) , (61)

where we have again used the shorthand notation, z = (cpp)?. One would have to
seek a more sophisticated expansion if p became large enough to approach 1/¢p. On
the other hand, always p < 1/V and in the weak limit, V = cp, so this is an unusual
circumstance.

The approximation, 7 = € — §, is valid in the weak limit, so equation (61) may be
recast as

Vinol) = 12 (14 120+ 20F(2)). (62)

with
2(6 — 9z + 42?)

F(z) = 1—-2

(63)

Apparently, we have a disappointing dependence on § in addition to that on V,;,,(0)
and 7. However, since the equation (59) in the exact elliptic case does not depend on
6, we are encouraged to look deeper. Indeed, on introducing

Y= (Vamo(0) p)* = (cpp)*(1 +26) = 2(1 +26), (64)

extracting the elliptic result in the notation of equation (60), and again ignoring
quadratic terms in the anisotropy parameters, one obtains the expression,

Vinelt) = V) (421G, Vo) = S, (65)

in which é does not appear and which is in agreement with the corresponding equation
in (Alkhalifah & Tsvankin). This last equation also implies the weak limit estimate,

~ 1 ‘/n2mo( ) _
"~2FW)<VMM Q' (66)

e

10
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At the next order in the anisotropy parameters,

V2,.(0) = V3(0) (1 + 20 F(y) + 4’1”y)2R<6, o), (67)

fa

" where,

R(6,n,y) = 66(1—f)(1—y)*(1—2y)
+ny(15 — (69 — 26f)y + (117 — 68f)y? (68)
—3(29 — 211)y® + 4(6 — 5f)y*).

Observe that, as the second order small-ray-parameter expansion, the higher order
term here does introduce § and f in violation of the Alkhalifah-Tsvankin theory.
However, observe first the consistency check, that in the elliptic limit, the higher
order vanishes entirely because of an overall factor of 7 that appears in it. Second,
notice that in the higher order term, the é’s are always multiplied by 1 — f, which
somewhat mitigates their contribution. Indeed, in the common approximation of
ignoring shear speed contributions by taking f = 1, the é terms drop out completely
along with the f contributions. Finally, observe that the function y(1 — 2y)(1 — y)
multiplying the é term has absolute maximum value less than 0.1 on the interval
0 < y < 1, again mitigating the effect of § on V2, (p) in this expansion. The overall

observation that using, say, f = 3/4, instead of the true value has little numerical
effect remains true here.
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ABSTRACT

In their studies of transversely isotropic media, I. Tsvankin and his co-workers
have shown the benefits of expressing the P-wave normal moveout velocity in
terms of the zero-offset ray parameter instead of the phase angle, but left for
future work the actual task of doing this. Here, explicit formulas are given for
both the P-wave phase velocity and normal moveout velocity in terms of the ray
parameter. Various results of Tsvankin and others are rederived and, in some
cases, extended, in a uniform manner using these explicit results.

The small ray-parameter expansion of the moveout velocity is valid for dips
up to approximately 15°. In this regime, an analytic solution for the anisotropy
parameter 7, important for time-related imaging is given in terms of observations
of moveout velocity for two different values of the ray parameter.

INTRODUCTION

In their studies of transversely isotropic media, I. Tsvankin and his co-workers
have shown the benefits of expressing the P-wave normal moveout velocity in terms
of the zero-offset ray parameter instead of the phase angle. Here, explicit formulas
are given for both the P-wave phase velocity and normal moveout velocity in terms
of the ray parameter. Various consequences of these results are drawn, including an
analytic solution for the anisotropy parameter 7, important for time-related imaging
is given in terms of observations of moveout velocity for two different values of the
ray parameter.

Throughout this study, Mathematica was used extensively to derive and check re-
sults. In particular, the Mathematica package, Thomsen.m (Cohen, 1995), was used
to convert equation (3) to Thomsen notation, in equation (5), and to obtain various
results in the limit of weak transverse isotropy. Similarly, the use of Mathematica
facilitated computing symbolic derivatives, series expansions, etc.
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PHASE VELOCITY AS A FUNCTION OF RAY PARAMETER

Begin with the formula for P-wave phase velocity in terms of dip 6 (Tsvankin,
1994), equation(6):

20V%(0) = (Ci1 + Caq) 5in 0 + (C33 + Cyy) cos® 8
+ {[(c11 — Cua)sin?8 — (Cgg — Ca) cos? 6]’ (1)
+ 4(C13 + Cy4)? sin’ @ cos? 0}1/2 .
Use the substitutions
p=sin@/V(8), m =cosd/V(9), (2)
to rewrite equation (1) as an equation for the slowness surface:
2p = (C11 + Caa)p® + (C33 + Cag)m?®
+ { [(011 ~ Caa)p® — (Ca3 — C44)m2]2 (3)

1/2
+ 4(013 + C'44)2p2m2} .

To obtain a formula for V' (p), follow the recipe given in (Alkhalifah & Tsvankin,
1995), Appendix A. Begin by converting equation (3) to Thomsen notation. After
introducing the on-axis P and S velocities, cp and cg, and the related quantities,

2
1 Cg

obtain the Thomsen-notation form of the slowness surface as

2k = (2 — f)m® + (2 + 2¢ — f)p? + \/4£(26 + f)m2p? + (f(p2 — m?) + 2ep?)2.  (5)

Next, solve equation (5) for m? and, from equation (2), form

1

V(p) = ——. 6

After some manipulations, find that V2(p) can be written as

Vi) = 22YE, @
where,
A = (2-fk—2(e— fo)p’ (8)
B = fk*—4afk[e—(2—8p*+4[2f(1= f)(e—6) + (e— f8)*| ', (9)
C = k?—2kep®—2f(e—6)p'. (10)



Jack K. Cohen Ray Parameter for TI Media

Before turning to some important special cases, observe the following consequences
of the definitions in equations (2):

1
sinf = pV(p), cosf=mV(p)=/1-(pV)?, p*+m?= Ve (11)

These equations will be of great convenience in translating between representations
in phase angle and representations in the ray parameter.

Small ray parameter

First observe that for p = 0,

A = (2- Pk, (12)
B = %, (13)
C = kK (14)

so that, )

2/n\ _ (2—fk+fk_3k__l_ 2
Vi) =5 =55 =1 =% (15)
leading to the expected result,

V(0) = cp. (16)

For later purposes, we will need to know the more detailed behavior of V' (p) for small
p. Introducing the dimensionless parameter,

z = (cpp)?, (17)

obtain

V(p) = cp[l+62+ ((e—6)(1+26/f) +36%/2) 2
+((e = 6)(1+26/)(56 +2(e — 26)/f) + 56°/2) 2*  (18)
+0(z*)] .

Remark: This expansion shows that the true meaning of “small p” is that z =
(cpp)? << 1. Since V = cp, the inequality can be written as sin’0 << 1, so in
dimensionless terms, “small p” represents a small dip angle 6.

Elliptic anisotropy
Next study the elliptic case (6§ = €), where

A = (2-fk-2(1- f)sp’ (19)
B = [fk+2(1- f)op’], (20)
C = k?-—2kép? (21)

3
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so that,
1 %
k—26p2  1—26ckhp?’

VZ(p) = (6 =r¢). (22)

Tsvankin (1995) gives the corresponding elliptic limit value of V2 in terms of the
phase angle, 8, as
V2%(8) = V2 cos® 8 + Vg sin? 9, (23)

where Vp = V(0) and Vgp = V(7/2) in the phase angle form of V implied by equa-
tion (1). These values are readily found from equation (5). When p = 0, then
m = 1/V(0), and the equation reduces to 2/c% = 2/V?%(0), so that

‘/0 = Cp. (24)
Similarly, when m = 0, then p = 1/Vy,, giving 2/c% = 2(1 + 6 + €)/ Vi, so that

Voo =cpV1+6+¢, (25)

which reduces to

Voo = cpV1+26 (6=c¢€ (26)

in the elliptic limit. This also confirms the known result that V;m.(0) = Vyo for
elliptically anisotropic media.

With these results in hand, equation (23) becomes
V2 =ck +26cksin?0 = ¢ +26c2p®V? (6 =¢). (27)

On isolating V2, equation (22) is verified.
Tsvankin (1995) likewise gives the form

V(0) = cpy/1+26sin%0  (6=¢) (28)
for the elliptic case. Introducing the ray parameter in that expression gives
V2 =% (1 + 26p*V?) (29)
and, once again, isolating V2 verifies equation (22).

Weak transverse isotropy

The weak TI limit of equation (7) is
V2(p) & b [1+2(6 + (€~ 8)chp’)cp”] (30)

or
V(p) ~ cp [1+ (8 + (e — 6)chp?)chp?] (31)
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Thomsen’s (1986) expression for this quantity expressed as a function of angle is
V() =cp [1 + (6 cos® 6 + esin® 8) sin® 0] . (32)

Tsvankin (1995) shows that this equation implies

2
Pk 7 (1 +2(e — 8)p'cp), (33)

. 20 —_Pr
S = I 262

which, in turn, in the weak limit is equivalent to
p°V? = p2ci[1 4 26p°c: + 2(e — 6)pch). (34)

On cancelling the common factor of p?, this verifies equation (30) and hence also
equation (31).

NORMAL MOVEOUT VELOCITY AS A FUNCTION OF RAY
PARAMETER

The derivation of the normal moveout velocity as a function of ray parameter,
follows closely the corresponding derivation of its expression in terms of the ray angle
given in (Tsvankin, 1995). For convenience, some explicit references are made to
equations in this paper.

First, use equations (11) to find the following relation for dp/dd:

dsinf , dp

where, here and below, the prime notation is used for p-differentiation. Thus, we find
that

mV = cosf = (35)

&V _dp _ mVV’

&=V a8 vy (36)
The derivation of Vymo(p) begins with Tsvankin’s equation (4),
Violp) = 222 i S20Y. @)

to h—0 dp

The second component of this expression is evaluated using Tsvankin’s equation (6),
equations (11), and equation (36):

Vsin8 + %cos@
V cos@ — %sinO
2 dv

%
mV2—pV-3§-

tany =
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pV(pV) +m?vV’
mV (pV) — mpV'V’
p(pV) +m?’V’
m[(pV) - pV']
p2vl + m2Vy! +pV
mV

V![VE+pV

mV
V' +pV3

The first component of equation (37) is similarly evaluated using Tsvankin’s equa-
tion (8):

% = Vcosé (1 -

ta,nOEIK
VvV db

= (39)

Using the previous two results in equation (37), find that

2 _mV3d (V' +pV?
Vnmo(p) - (pV), dp ( mV3 (40)

or, on eliminating m,
V2 (p) = VA1-V)?:d [ V' +pV? (a1)
nme @v)y e \vz/1-(v)2)

Carrying out the indicated derivative gives an explicit formula for the normal moveout
velocity as a function of ray parameter:

2(1 — P’ V2)\VV" 4 (3p?V2 - 2)V"2 + 2pV3V’ + Vvt
V2 (p) = 2L=PV) i)\ (42)
(1-p2V23)V(pV)

6
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Before turning to the special cases for V, note that when it is necessary to treat
the general V, it may be better to avoid a layer of square roots by writing V2. _(p) in
terms of W = V2

V2 ()= 2(1 — pPPW)WW” + (4p?W — 3)W'2 + dpW?2W' + 4W3
nmo 2(1 — pPPW)W (pW' + 2W)

(43)

Small ray parameter

First, use the two leading terms of equation (18) to obtain the approximations,
V =cp+cpbp?+0(p*), V'=2ch6p+0(%), V"'=264+0(").  (44)

On inserting these small-p approximations into equation (42), find that

Vn2mo( ) - C?;(]. + 26) + O(p2)’ (45)
” Vamo(0) = cpV/1 + 26. (46)

Now use the next order terms of equation (18) in equation (42) to get the next
term in V2 (p):

(cpp)®

V2 (p)=c> (1 +26 + (( —246% + 246¢ + f — 86f + 462 f + 12¢f) ) + O(CPP)4) .

(47)
Remark: Again, the expansion shows that the true meaning of “small p” is that
(cpp)® << 1. Since V = cp, and the error is fourth order, this means we can
interpret “small p” as meaning sin?d << 1. Numerical tests show that using the
small p series for a dip of 15° incurs about a 2% error for typical values of f and é.

The theory discussed by (Alkhalifah & Tsvankin, 1995) suggests that it is better
to express this result in terms of the parameters Vj0(0) and
€e—9
1426

n= (48)

First introduce 7,
V2o(p) = ch(1+26) + (ch(1 +26)(246n + f + 26f + 120f)p%) / f + O(p*), (49)

then use equation (46) to eliminate the explicit appearances of c¢% in favor of V.2 (0):

1+26/f

Vin(#) = V(0| (14 1+ 120 520002, 002) + 0000 (50

The importance of the anisotropic parameter 7, is that Alkhalifah and Tsvankin
(1995) have observed, both numerically and empirically, that V2, (p) depends mainly

7
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on 1 and V2 (0). They exploit this reduction to surface-observable parameters to
develop time-domain seismic processing algorithms that take account of transverse
anisotropy. Equation (50) gives analytic support to the Alkhalifah-Tsvankin theory,
since the only deviation to it occurs in the ratio

_1+428/f

1+26 (51)

that multiplies 7. Figures (1) and (2) show plots of this function over the ranges of
f and § that are relevant in practice. Observe that the function g(é, f) varies slowly
over these ranges—indeed—ignoring it altogether (i.e., replacing it by the constant
1) is usually justified—at least in the small-angle approximation.

-0.1 0.1 0.2

F1G. 1. Plot of the factor g = (1 + 26/f)/(1 + 26) as a function of é for f = 0.7
(dark) and f = 0.8 (light).

The small-ray-parameter result in equation (50) gives a means for estimating 7
from surface observations. For example, suppose one has observations of Vymo(p) at
p = 0 and some other (not too large) value p = p;. The solution for 7 is given by

1 Vnzmo(pl) — V2 (0)
z nmo — 1
1% T2g ( PAVA(0) ’ (52)

where once again, in the absence of information on é and f, the factor g can be
replaced by the constant 1 without much error.

More generally, if one uses two nonzero “small p” values (that is, two separated

dips, each less than 15°), then the estimate for V2, (0) is given by

(0) — pgvr?mo(pl) — p%‘/tl2mo(p2) (53)

V2 ,
3 —p}

nmo
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F1G. 2. Plot of the factor g = (1 +26/f)/(1 + 26) as a function of f for § = —0.05
(dark) and 6 = +0.1 (light).

and the estimate for 7 is

~ 1 (p% - p%)(‘/x?mo(p?) - Vn2mo(p1)) _
= 12g ( (p%Vano(p2) _p%Vn2mo(pl))2 1) . (54)

Finally, note that the full form of the series for V.2 (p) is given by

Virno(P) = Vitno(0) [1 + €2V20o(0)8 + €aVimo (0)p" + -] , (55)
where, as we have seen earlier,
c2=1+12gn~1+12y. (56)
By using the full form of equation (18), we find that
60 60
cs =1+469(6 — 59)n+ —2172 ~ 1469+ —n°. (57)

f f

Here, the approximations result from replacing the factor g defined in equation (51)
by the constant 1. Note that the final term in ¢4 indicates the first serious divergence
from the theory that V.2, (p) depends only on the parameters V.2 _(0) and 5. However,

this term is multiplied by both p? and 7?, which ameliorates the effect of replacing
the f in this term by, say, 3/4 instead of the true value.

Elliptic anisotropy

Inserting the elliptic P-wave phase velocity as a function of ray parameter given
in equation (22) into the general NMO equation (42) gives at once

_ A(1+29)
Vimol®) = (71 5 25087

(58)

9
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Recognizing the quantity Vimo(0) from equation (46) gives

Vamo(D) = 7 _""'2"‘(/2)

an

(6 =¢), (59)

in agreement with the result in (Alkhalifah & Tsvankin, 1995). For future use, intro-
duce the notation,
Vamo(0)

Vai(p) = ) (60)
@ V1= PV (0)
for the elliptic result.
Weak transverse isotropy
Using equation (31) in equation (42) gives
-6 - 422
Vinlp) = 72 (14 200009+ ) 1)

where we have again used the shorthand notation, z = (cpp)?. One would have to
seek a more sophisticated expansion if p became large enough to approach 1/cp. On
the other hand, always p < 1/V and in the weak limit, V = cp, so this is an unusual
circumstance.

The approximation, 7 = € — §, is valid in the weak limit, so equation (61) may be
recast as

Vi) = 12 (14 125 420 (). (62)

with

2(6 — 92 + 42%)

1-2 '
Apparently, we have a disappointing dependence on § in addition to that on Vj,0(0)
and 7. However, since the equation (59) in the exact elliptic case does not depend on
0, we are encouraged to look deeper. Indeed, on introducing

¥ = (Vamo(0) p)* = (cpp)?(1 + 26) = 2(1 + 26), (64)

F(z) = (63)

extracting the elliptic result in the notation of equation (60), and again ignoring
quadratic terms in the anisotropy parameters, one obtains the expression,

Vinale) = Vi) 1+ 21FG), Vo) = oz, (65)

in which é does not appear and which is in agreement with the corresponding equation
in (Alkhalifah & Tsvankin). This last equation also implies the weak limit estimate,

o1 (Vi)
"N 5F@) (Ve%.(p) 1)' (66)

10
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At the next order in the anisotropy parameters,

Vino(o) = V@) (1 + 20 P(6) + 7oz R0, ), (67)

" where,

R(6,m,y) = 66(1— f)(1—y)*(1—2y)
+ny(15 — (69 — 26 f)y + (117 — 68f)y* (68)
—3(29 - 21f)y® + 4(6 — 5f)y*).

Observe that, as the second order small-ray-parameter expansion, the higher order
term here does introduce § and f in violation of the Alkhalifah-Tsvankin theory.
However, observe first the consistency check, that in the elliptic limit, the higher
order vanishes entirely because of an overall factor of 7 that appears in it. Second,
notice that in the higher order term, the é’s are always multiplied by 1 — f, which
somewhat mitigates their contribution. Indeed, in the common approximation of
ignoring shear speed contributions by taking f = 1, the é terms drop out completely
along with the f contributions. Finally, observe that the function y(1 — 2y)(1 — y)
multiplying the 6 term has absolute maximum value less than 0.1 on the interval
0 < y < 1, again mitigating the effect of § on V2__(p) in this expansion. The overall
observation that using, say, f = 3/4, instead of the true value has little numerical
effect remains true here.
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ABSTRACT

In their studies of transversely isotropic media, I. Tsvankin and his co-workers
have shown the benefits of expressing the P-wave normal moveout velocity in
terms of the zero-offset ray parameter instead of the phase angle, but left for
future work the actual task of doing this. Here, explicit formulas are given for
both the P-wave phase velocity and normal moveout velocity in terms of the ray
parameter. Various results of Tsvankin and others are rederived and, in some
cases, extended, in a uniform manner using these explicit results.

The small ray-parameter expansion of the moveout velocity is valid for dips
up to approximately 15°. In this regime, an analytic solution for the anisotropy
parameter 77, important for time-related imaging is given in terms of observations
of moveout velocity for two different values of the ray parameter.

INTRODUCTION

In their studies of transversely isotropic media, I. Tsvankin and his co-workers
have shown the benefits of expressing the P-wave normal moveout velocity in terms
of the zero-offset ray parameter instead of the phase angle. Here, explicit formulas
are given for both the P-wave phase velocity and normal moveout velocity in terms
of the ray parameter. Various consequences of these results are drawn, including an
analytic solution for the anisotropy parameter 7, important for time-related imaging
is given in terms of observations of moveout velocity for two different values of the
ray parameter.

Throughout this study, Mathematica was used extensively to derive and check re-
sults. In particular, the Mathematica package, Thomsen.m (Cohen, 1995), was used
to convert equation (3) to Thomsen notation, in equation (5), and to obtain various
results in the limit of weak transverse isotropy. Similarly, the use of Mathematica
facilitated computing symbolic derivatives, series expansions, etc.
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PHASE VELOCITY AS A FUNCTION OF RAY PARAMETER

Begin with the formula for P-wave phase velocity in terms of dip 6 (Tsvankin,
1994), equation(6):

20V2(0) = (Cy1 + Caq) sin? 0 + (C33 + Cua) cos? 8
+{[(11 -~ Cua)sin 8 - (Coa = Cua) cos?6] 1)
+ 4(Ci3 + Caa)? sin® 6 cos® 0}1/2 .
Use the substitutions

p =sin8/V(0), m = cosf/V(6), (2)

to rewrite equation (1) as an equation for the slowness surface:

2p = (C11 + Caa)p® + (Ca3 + Cag)m?
+ {[(Cu ~ Cua)p* — (Ca3 — 044)7"2]2 (3)
+4(Ci3 + C44)2p2m2}1/2 :

To obtain a formula for V(p), follow the recipe given in (Alkhalifah & Tsvankin,

1995), Appendix A. Begin by converting equation (3) to Thomsen notation. After
introducing the on-axis P and S velocities, cp and cg, and the related quantities,

k==, f= —;—i, (4)

o]

obtain the Thomsen-notation form of the slowness surface as

2k = (2 — f)m? + (2+ 26 — f)p* +/4£(26 + f)m?p? + (f(p® — m?) + 2p?)2.  (5)

Next, solve equation (5) for m? and, from equation (2), form

V(p) = ———— (6)

- VP2 + m?(p)

After some manipulations, find that V2(p) can be written as

V() =2 ;(;/E , (7)
where,
A = (2-fk—2(- fo)p, (8)
B = £ —afkle— (2 )] +4[2f(1 - )(e—8) +(c— f6)°] o, (9)
C = k?—2kep® —2f(e— 6)p*. (10)
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Before turning to some important special cases, observe the following consequences
of the definitions in equations (2):

1
sinf = pV(p), cosf =mV(p)=4/1—(V)?2, p*+m?= Ve (11)

These equations will be of great convenience in translating between representations
in phase angle and representations in the ray parameter.

Small ray parameter

First observe that for p = 0,

A = @-k, (12)
B = f%?, (13)
c = K, (14)
so that,
2y G- Dk+fE_ 2k _1_ ,

VO =7 =m=5=% (15)

leading to the expected result,
V(O) = Cp. (16)

For later purposes, we will need to know the more detailed behavior of V (p) for small
p. Introducing the dimensionless parameter,

z = (cpp)?, (17)
obtain
V() = cp[l+62+ ((e—6)(1+28/f) +38%/2) 22
+((e — 8)(1+26/£)(56 +2(e — 26)/f) +56%/2) 2 (18)
+O(z4)] :

Remark: This expansion shows that the true meaning of “small p” is that 2z =
(cpp)? << 1. Since V = cp, the inequality can be written as sin®@ << 1, so in
dimensionless terms, “small p” represents a small dip angle 6.

Elliptic anisotropy
Next study the elliptic case (6 = ¢€), where

A = (2-fk—2(1- f)6p’, (19)
B = [fk+2(1- f)sp°], (20)
C = k?—2kép? (21)

3
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so that,

2
1 cp

2 —_ —_—
Vi) = k—26p2  1—26chp?’

(6 = e). (22)

Tsvankin (1995) gives the corresponding elliptic limit value of V2 in terms of the
phase angle, 0, as
V2(8) = V@ cos? 0 + Vg sin® 0, (23)

where Vj = V(0) and Vg9 = V(7/2) in the phase angle form of V implied by equa-
tion (1). These values are readily found from equation (5). When p = 0, then
m = 1/V(0), and the equation reduces to 2/c% = 2/V?(0), so that

1/0 = Cp. (24)
Similarly, when m = 0, then p = 1/Vj, giving 2/c% = 2(1 + 6 + €)/Vyo, so that

‘/90=Cp\/1+6+€, (25)

which reduces to

‘/90 =cpV 1426 ((5 = 6) (26)

in the elliptic limit. This also confirms the known result that V;n.(0) = Vyo for
elliptically anisotropic media.

With these results in hand, equation (23) becomes
V2 =c% +26c%sin’ 0 = ¢ + 26c%p*V? (6 =¢). (27)

On isolating V2, equation (22) is verified.
Tsvankin (1995) likewise gives the form

V(0) =cpyl+26sin28 (6=¢) (28)
for the elliptic case. Introducing the ray parameter in that expression gives
VZ=c4(1+ 26p*V?) (29)
and, once again, isolating V2 verifies equation (22).

Weak transverse isotropy

The weak T1I limit of equation (7) is
V2(p) ~ ¢ [1 4206 + (e — O)cGp’) ], (30)

V(p) = cp [1+ (6 + (e — 8)chp?)chp?] . (31)
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Thomsen’s (1986) expression for this quantity expressed as a function of angle is
V(6) = cp [1 + (6cos? 8 + esin® 6) sin 6] . (32)

Tsvankin (1995) shows that this equation implies
.2 p’cp 4 4
which, in turn, in the weak limit is equivalent to
p’V? = p’ch[1 + 26p°ch + 2(e — 8)p*ch). (34)

On cancelling the common factor of p?, this verifies equation (30) and hence also
equation (31).

NORMAL MOVEOUT VELOCITY AS A FUNCTION OF RAY
PARAMETER

The derivation of the normal moveout velocity as a function of ray parameter,
follows closely the corresponding derivation of its expression in terms of the ray angle
given in (Tsvankin, 1995). For convenience, some explicit references are made to
equations in this paper.

First, use equations (11) to find the following relation for dp/d#:

dsinf _

dp

where, here and below, the prime notation is used for p-differentiation. Thus, we find

that .
v v d_p _ mVV

mV = cosf =

a4~ d8 - (pV) (36)
The derivation of V mo(p) begins with Tsvankin’s equation (4),
Vanolp) = 22 Jim 202 @)

to h—0 dp

The second component of this expression is evaluated using Tsvankin’s equation (6),
equations (11), and equation (36):

Vsiné + %cosﬂ

t =
any V cosf — 9 sind
dv
pV2 -} mVﬁ

mV?2 — pV%
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pV +m
mV — p‘fi—‘;
pV(pV) + m?VV’
mV (pV) — mpVV'
p(pV) +m*V’
m[(pV) — pV’]
p2vl + m2v'’ +pV

mV
V|V 4 pV

mV

V' +pV3

The first component of equation (37) is similarly evaluated using Tsvankin’s equa-
tion (8):

gf-q = Vcosé (1 -

tané ﬂ
V db
_ 2o, P mVV'
= mV (1 mV_(p ),>
VI
= mV? (1 - p_)
(V)
V +pV' —pV’

(V)
mVy3

% (@)

= mV?

Using the previous two results in equation (37), find that

2 o mV3d (V' 4pV?
Vnmo(p) - (pV)’ dp ( mV3 (40)

or, on eliminating m,
V2 () = VA1-0V)?d [ V' +pV? (a1)
nme @V)  dp\vy/1-(v)2)

Carrying out the indicated derivative gives an explicit formula for the normal moveout
velocity as a function of ray parameter:

2(1 — pPVAVV + (3pPV2 — 2)V"2 4 2pV3V" 4 V4
V2, (p) = BV VYA GP o DY+ 2 (42)
(1-pV2)V(pV)
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Before turning to the special cases for V, note that when it is necessary to treat
the general V, it may be better to avoid a layer of square roots by writing V2 (p)in
terms of W = V2

V2 () = 2(1 — PPW)WW" + (4p°W — 3)W"2 + 4pW2W' + 4W3
nmoP) = 2(1— pW)W (pW' + 2W)

(43)

Small ray parameter

First, use the two leading terms of equation (18) to obtain the approximations,
V=cp+cpbp’ +0(p"), V' =2p+0(p®), V"=236+0(@%.  (44)

On inserting these small-p approximations into equation (42), find that

Virno(P) = ¢h(1 + 26) + O(p?), (45)
" Vamo(0) = cpv/1 25, (46)

Now use the next order terms of equation (18) in equation (42) to get the next

term in V.2 _(p):

V2. =c (1 +26 + ((—-2462 + 246+ f — 86f + 462 f + 12ef)(c—PfP)—2) + 0(0pp)4> .
(47)

Remark: Again, the expansion shows that the true meaning of “small p” is that
(cpp)® << 1. Since V =~ cp, and the error is fourth order, this means we can
interpret “small p” as meaning sin?# << 1. Numerical tests show that using the
small p series for a dip of 15° incurs about a 2% error for typical values of f and 6.

The theory discussed by (Alkhalifah & Tsvankin, 1995) suggests that it is better
to express this result in terms of the parameters Vamo(0) and
€e—96
1426

n= (48)

First introduce 7,
Voono(P) = (1 +28) + (ch(1 +26)(246n + £ +26f + 12nf)p?) /£ + O(p), (49)

then use equation (46) to eliminate the explicit appearances of ¢} in favor of V2 (0):

1+ 26/f

2 — 12
Via(p) = V(0 [(14+ (14120 1220

)v,?mm)p?) s om‘*mo(mp‘*)] (50)

The importance of the anisotropic parameter 7, is that Alkhalifah and Tsvankin
(1995) have observed, both numerically and empirically, that V;2,_(p) depends mainly

7
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2 _(0). They exploit this reduction to surface-observable parameters to
develop time-domain seismic processing algorithms that take account of transverse
anisotropy. Equation (50) gives analytic support to the Alkhalifah-Tsvankin theory,
since the only deviation to it occurs in the ratio

_1+26/f
T 1426

on i and V2

(51)

that multiplies 7. Figures (1) and (2) show plots of this function over the ranges of
f and 6 that are relevant in practice. Observe that the function g(é, f) varies slowly
over these ranges—indeed—ignoring it altogether (i.e., replacing it by the constant
1) is usually justified—at least in the small-angle approximation.

-0.1 0.1 0.2

F1G. 1. Plot of the factor g = (1 + 26/ f)/(1 + 26) as a function of 6 for f = 0.7
(dark) and f = 0.8 (light).

The small-ray-parameter result in equation (50) gives a means for estimating 7
from surface observations. For example, suppose one has observations of Vymo(p) at
p = 0 and some other (not too large) value p = p;. The solution for 7 is given by

1 ‘/nzmo(pl) — Vn2mo(0)
”“‘129< A ) (52)

nmo

where once again, in the absence of information on 6§ and f, the factor g can be
replaced by the constant 1 without much error.

More generally, if one uses two nonzero “small p” values (that is, two separated
dips, each less than 15°), then the estimate for V2 (0) is given by

2172 o2
Vn2mo(0) — p2Vnmo(plg — p;v;lmo(pi’), (53)
P2 —P1
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F1G. 2. Plot of the factor g = (1 + 26/f)/(1 + 26) as a function of f for § = —0.05
(dark) and 6 = +0.1 (light).

and the estimate for 7 is

n & 1 ((p% _pg)(‘/l?mo(pﬂ - Vn2mo(p1)) - 1) . (54)

~ 129 (p%‘/r?mo(p?) _pgvn2mo(pl))2

Finally, note that the full form of the series for V2, (p) is given by

Vimo(P) = Vino(0) [1+ 2V (0)8° + €aVno (0)p* + -] (55)
where, as we have seen earlier,
co=14+12gn~ 1+ 121. (56)
By using the full form of equation (18), we find that
60 60
ca=1+6g(6—5g)n+ Tg172 ~1+6n+ 7172. (57)

Here, the approximations result from replacing the factor g defined in equation (51)
by the constant 1. Note that the final term in ¢, indicates the first serious divergence
from the theory that V2, (p) depends only on the parameters V;2__(0) and 7. However,

this term is multiplied by both p? and 72, which ameliorates the effect of replacing
the f in this term by, say, 3/4 instead of the true value.

Elliptic anisotropy

Inserting the elliptic P-wave phase velocity as a function of ray parameter given
in equation (22) into the general NMO equation (42) gives at once
ch(1 + 26)
‘/nzmo(p) = £ c2 2\ *
(1 = (1 +26)cpp?)

(58)

9
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Recognizing the quantity V,,.(0) from equation (46) gives

nmo(O)
\/1 — p2V2

an

Vamo(P) = (6=p¢), (59)

in agreement with the result in (Alkhalifah & Tsvankin, 1995). For future use, intro-
duce the notation,

Vamo(0)
Vau(p) = ) (60)
V1=pV2(0)
for the elliptic result.
Weak transverse isotropy
Using equation (31) in equa.tion (42) gives
2(6 + (e —6) 2(6 — 92 + 422
Vi) = 12 (14 222020 D), 61)

where we have again used the shorthand notation, 2 = (cpp)?. One would have to
seek a more sophisticated expansion if p became large enough to approach 1/cp. On
the other hand, always p < 1/V and in the weak limit, V' & cp, so this is an unusual
circumstance.

The approximation, 7 = € — §, is valid in the weak limit, so equation (61) may be

recast as
% ( 26

(14 =+ 2nF(z)) (62)

2
V. 1-—

nmo( ) =

with

2(6 — 92 + 42%)

F(z) = T

(63)

Apparently, we have a disappointing dependence on é in addition to that on V;(0)
and 7. However, since the equation (59) in the exact elliptic case does not depend on
6, we are encouraged to look deeper. Indeed, on introducing

¥ = (Vamo(0) p)? = (cp p)?(1 + 26) = 2(1 + 26), (64)

extracting the elliptic result in the notation of equation (60), and again ignoring
quadratic terms in the anisotropy parameters, one obtains the expression,

Vault) = VA0 1+ 20F @), Valp) = 2. (65

in which 6 does not appear and which is in agreement with the corresponding equation
in (Alkhalifah & Tsvankin). This last equation also implies the weak limit estimate,

o~ 2 o(P)
n 2F<y)( VA l)‘ (66)

10
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At the next order in the anisotropy parameters,

4
Vnzmo(p) = ‘/j](p) (1 + 27] F(y) -+ +yy

f(]. )2R(6a m y))1 (67)
"~ where,

R(é,m,y) = 66(1—f)(1—y)*(1-2y)
+ny(15 — (69 — 26 f)y + (117 — 68f)y® (68)
—3(29 — 211)y® + 4(6 — 5f)y*).

Observe that, as the second order small-ray-parameter expansion, the higher order
term here does introduce § and f in violation of the Alkhalifah-Tsvankin theory.
However, observe first the consistency check, that in the elliptic limit, the higher
order vanishes entirely because of an overall factor of 5 that appears in it. Second,
notice that in the higher order term, the é’s are always multiplied by 1 — f, which
somewhat mitigates their contribution. Indeed, in the common approximation of
ignoring shear speed contributions by taking f = 1, the 6 terms drop out completely
along with the f contributions. Finally, observe that the function y(1 — 2y)(1 — y)
multiplying the § term has absolute maximum value less than 0.1 on the interval
0 < y < 1, again mitigating the effect of § on V2 _(p) in this expansion. The overall

observation that using, say, f = 3/4, instead of the true value has little numerical
effect remains true here.
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ABSTRACT

In their studies of transversely isotropic media, I. Tsvankin and his co-workers
have shown the benefits of expressing the P-wave normal moveout velocity in
terms of the zero-offset ray parameter instead of the phase angle, but left for
future work the actual task of doing this. Here, explicit formulas are given for
both the P-wave phase velocity and normal moveout velocity in terms of the ray
parameter. Various results of Tsvankin and others are rederived and, in some
cases, extended, in a uniform manner using these explicit results.

The small ray-parameter expansion of the moveout velocity is valid for dips
up to approximately 15°. In this regime, an analytic solution for the anisotropy
parameter 7, important for time-related imaging is given in terms of observations
of moveout velocity for two different values of the ray parameter.

INTRODUCTION

In their studies of transversely isotropic media, I. Tsvankin and his co-workers
have shown the benefits of expressing the P-wave normal moveout velocity in terms
of the zero-offset ray parameter instead of the phase angle. Here, explicit formulas
are given for both the P-wave phase velocity and normal moveout velocity in terms
of the ray parameter. Various consequences of these results are drawn, including an
analytic solution for the anisotropy parameter 7, important for time-related imaging
is given in terms of observations of moveout velocity for two different values of the
ray parameter.

Throughout this study, Mathematica was used extensively to derive and check re-
sults. In particular, the Mathematica package, Thomsen.m (Cohen, 1995), was used
to convert equation (3) to Thomsen notation, in equation (5), and to obtain various
results in the limit of weak transverse isotropy. Similarly, the use of Mathematica
facilitated computing symbolic derivatives, series expansions, etc.
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PHASE VELOCITY AS A FUNCTION OF RAY PARAMETER

Begin with the formula for P-wave phase velocity in terms of dip 8 (Tsvankin,
1994), equation(6):

20V2(8) = (Cy1 + Cas) sin? 0 + (Ca3 + Cuq) cos? 6
+ {[(Cn — Cy4) 5in? 0 — (C33 — Cy4) cos? 0]2 (1)
+ 4(C13 + Cy4)? sin® 6 cos? 0}1/2 .
Use the substitutions
p=sind/V(0), m =cosd/V(9), (2)
to rewrite equation (1) as an equation for the slowness surface:
2p = (C11 + Cug)p* + (Cs3 + Cag)m?®
+ { [(Cn — Cu4)p” — (C33 — C44)m2]2 3)

1/2
+ 4(013 + C44)2p2m2} .

To obtain a formula for V(p), follow the recipe given in (Alkhalifah & Tsvankin,
1995), Appendix A. Begin by converting equation (3) to Thomsen notation. After
introducing the on-axis P and S velocities, cp and cg, and the related quantities,

1 CS

—_ 4
C%; b f C2P b ( )
obtain the Thomsen-notation form of the slowness surface as

2k = (2 — f)m? + (2+ 2¢ — f)p* + \/4£(26 + f)m2p? + (f(p? — m?) + 2¢p?)2. (5)

k=

Next, solve equation (5) for m? and, from equation (2), form

1

V(p) = —————. 6

After some manipulations, find that V2(p) can be written as

Vi) = 22VE @
where,
A = (2-fk—2(e— f8)p’, (8)
B = f%—afkle—(2— )8)p* +4[2f(1— f)(e = 8) + (e— f6)*] p*, (9)
C = k?—2kep® —2f(e—6)p". (10)
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Before turning to some important special cases, observe the following consequences
of the definitions in equations (2):

sinf =pV(p), cosd=mV(p)=4/1-(pV)?2, p*+m?= VIE (11)

These equations will be of great convenience in translating between representations
in phase angle and representations in the ray parameter.

Small ray parameter

First observe that for p = 0,

A = @2k, (12)
B = f%?, (13)
C = K, (14)
so that,
oy 2= Nk+fk _ 2k 1 _ ,

VO="—7~® 5% 15)

leading to the expected result,
V(0) = cp. (16)

For later purposes, we will need to know the more detailed behavior of V' (p) for small
p. Introducing the dimensionless parameter,

z = (cpp)?, (17)
obtain
V(p) = cp[l1+6z+ ((e—6)(1+26/f)+36%/2) 2
+((e— 6)(1 +26/)(56 +2(e — 26)/ f) + 56%/2) 2> (18)
+0(*)] .

Remark: This expansion shows that the true meaning of “small p” is that z =
(epp)? << 1. Since V = cp, the inequality can be written as sin?f << 1, so in
dimensionless terms, “small p” represents a small dip angle 6.

Elliptic anisotropy
Next study the elliptic case (6 = €), where

A = (2-fk-20- e, (19)
B = [fk+2(1- fep’P, (20)
C = k- 2kép?, (21)

3
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so that,
1 %

2 —_ =
Vi) k—26p2 1—26chp?’

(6= e). (22)

Tsvankin (1995) gives the corresponding elliptic limit value of V2 in terms of the
phase angle, 6, as
V2(6) = VZcos? 0 + Vi sin? 9, (23)

where Vp = V(0) and Vg9 = V(7/2) in the phase angle form of V implied by equa-
tion (1). These values are readily found from equation (5). When p = 0, then
m = 1/V(0), and the equation reduces to 2/c% = 2/V?2(0), so that

Vb = Cp. (24)
Similarly, when m = 0, then p = 1/Vy, giving 2/c% = 2(1 + 6 + €)/Vqo, so that

Voo =cpV1+6+e, (25)

which reduces to

Vao=cpV1+26 (6=¢) (26)

in the elliptic limit. This also confirms the known result that V,,(0) = Vg for
elliptically anisotropic media.

With these results in hand, equation (23) becomes
V2% =% +26c%sin 0 = % + 26c5p’V?E (6 =¢). (27)

On isolating V2, equation (22) is verified.
Tsvankin (1995) likewise gives the form

V() =cpy1+26sin’8 (6=¢) (28)
for the elliptic case. Introducing the ray parameter in that expression gives
V2 = c%(1 + 26p*V?) (29)
and, once again, isolating V2 verifies equation (22).

Weak transverse isotropy

The weak T1I limit of equation (7) is
Vi)~ ch [1+2(6+ (c — O)chp™) ] (30)

or
V(p) = cp [1+ (6 + (e - )chp?)chp?] . (31)
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Thomsen’s (1986) expression for this quantity expressed as a function of angle is
V(8) = cp [1 + (6 cos? 8 + esin? 0) sin® ] . (32)

Tsvankin (1995) shows that this equation implies

pc%
L2 _ A\l
sin @ = 1= 26p°C% [1+ 2(e — 6)p*ch), (33)

which, in turn, in the weak limit is equivalent to
p°V? = p’ch[1 + 26p%c + 2(e — 6)pch). (34)

On cancelling the common factor of p?, this verifies equation (30) and hence also
equation (31).

NORMAL MOVEOUT VELOCITY AS A FUNCTION OF RAY
PARAMETER

The derivation of the normal moveout velocity as a function of ray parameter,
follows closely the corresponding derivation of its expression in terms of the ray angle
given in (Tsvankin, 1995). For convenience, some explicit references are made to
equations in this paper.

First, use equations (11) to find the following relation for dp/d6:

dsinf
dé d0 !

where, here and below, the prime notation is used for p-differentiation. Thus, we find
that

mV = cosf = =(p V) (35)

_cﬂ/__v,@_mVV'

b= vy (36)
The derivation of V,0(p) begins with Tsvankin’s equation (4),
2z dtany
2 0
Vnmo(p) - tO ,11_)0 dp : (37)

The second component of this expression is evaluated using Tsvankin’s equation (6),
equations (11), and equation (36):

V siné + cos 6
V cos@ — sm 6
dV
pVZi4+mViL @
mV?—pV s

tany =
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pV(pV) + m2vVv’
mV (pV) — mpVV'
p(pV) +m?V’
m[(pV) — pV']
p2vl + m2v! +pV
mV

V' IV2 4 pV

mV
V' +pV3

The first component of equation (37) is similarly evaluated using Tsvankin’s equa-
tion (8):

-2—%2 = Vecosl (1 -

taneﬂ
vV db

Using the previous two results in equation (37), find that

2 _ mV3 d_ V' +pV3
Vamo(P) = (pV)' dp < mV3

(40)

or, on eliminating m,

V2 ( )=V2V1-(pv)2i( V'+pV3 )
nmo p (p )[ dp Vle _ (pV)2 '

Carrying out the indicated derivative gives an explicit formula for the normal moveout
velocity as a function of ray parameter:

(41)

V2 () = 20— P VAVV" + (3pV2 - 2)V + 2pVOV" + V4
nmo(p) - (1 —p2V2)V(pV)’ (42)

6
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Before turning to the special cases for V, note that when it is necessary to treat
the general V, it may be better to avoid a layer of square roots by writing V2 (p) in
terms of W = V2

V2 (p) = 2(1 — pPPWYWW” 4 (4p*W — 3)W'2 + 4pW2W' 4 4W3
nmo 2(1 — p*W)W (pW' + 2W)

(43)

Small ray parameter

First, use the two leading terms of equation (18) to obtain the approximations,
V =cp+cpép?+0(p*), V'=26p+0(p), V"=2c6+ 0. (44)

On inserting these small-p approximations into equation (42), find that

Vamo(P) = cp(1+26) + O(p*), (45)
so
K.mo(O) =cpV 1 + 20. (46)
Now use the next order terms of equation (18) in equation (42) to get the next
term in V2 (p):

V2 (p)=c2 (1 +26+ (( —246% + 246e + f — 86f + 46%f + 12¢f) (c’}”) ) + O(cpp)“) .
(47)

Remark: Again, the expansion shows that the true meaning of “small p” is that
(cpp)? << 1. Since V = cp, and the error is fourth order, this means we can
interpret “small p” as meaning sin*d << 1. Numerical tests show that using the
small p series for a dip of 15° incurs about a 2% error for typical values of f and 6.

The theory discussed by (Alkhalifah & Tsvankin, 1995) suggests that it is better
to express this result in terms of the parameters V;0(0) and
€e—96
1+26

n= (48)

First introduce 7,
Virno(P) = cp(1 +26) + (ch(1 + 26)(246n + f + 26f + 120f)p?) /f + O(p*), (49)

then use equation (46) to eliminate the explicit appearances of ¢ in favor of V2. (0):
P nmo

1+26/f

Vinls) = Vino0) | (14 (14120 1E )V 057) + 00| (60)

The importance of the anisotropic parameter 7, is that Alkhalifah and Tsvankin
(1995) have observed, both numerically and empirically, that V,2__(p) depends mainly

7
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2 (0). They exploit this reduction to surface-observable parameters to
develop time-domain seismic processing algorithms that take account of transverse
anisotropy. Equation (50) gives analytic support to the Alkhalifah-Tsvankin theory,
since the only deviation to it occurs in the ratio

_1+26/f
T 1426

on 7 and V2

(51)

that multiplies 7. Figures (1) and (2) show plots of this function over the ranges of
f and 6 that are relevant in practice. Observe that the function g(é, f) varies slowly
over these ranges—indeed—ignoring it altogether (i.e., replacing it by the constant
1) is usually justified—at least in the small-angle approximation.

F1G. 1. Plot of the factor g = (1 + 26/f)/(1 + 26) as a function of § for f = 0.7
(dark) and f = 0.8 (light).

The small-ray-parameter result in equation (50) gives a means for estimating 7
from surface observations. For example, suppose one has observations of Vymo(p) at
p = 0 and some other (not too large) value p = p;. The solution for 7 is given by

1 ‘/nzmo(pl) - ‘/nzmo(o)
"7 129 ( W ) 2

where once again, in the absence of information on é and f, the factor g can be
replaced by the constant 1 without much error.

More generally, if one uses two nonzero “small p” values (that is, two separated

dips, each less than 15°), then the estimate for V2, (0) is given by

2172 — p2V2
‘/n2mo(0) — p2Vnmo(plg P; nmo(p2) : (53)
P2 — P
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Fi1G. 2. pjot of the factor g=

(1+ 26/f)/(1 + 26) as a functjop of f for § = —0.05
(dark) and §'= +0.1 (light).

and the estimate for 7 is

nmo

”&,i((pf-p%’)(‘{.?m(pz)—V.ﬁno(pl)) _1).
12g \ " (3v2 (p2) — V2

54
L) 54
Finally, hote that the full form of the series for Vn?no(p) is given by
Vimo(2) = V2,_(0) [1+ V2, ()2, €4Vomo(0)p* + .. ], (55)
Where, as we have seep earlier
C2=1+12gp~ ] + 125 (56)
By using the full form of equation (18), we fing that
60 60
% =14 6(6 - 5g), 4 79772 ~1+6p+ =7 (57)
Here, the approximations reg

ult from repl

by the const the fina] tey

acing the facto
ant 1. Note that

I g defined jp €quation (51)
M in ¢4 indicates the first serious divergence
from the theory that V2 ( p) depends only on the Paramete
this term js multiplied by b

1s V2 (0) and 7. However,
which ameliorates the effect of replacing
e true valye,

oth p? and 52,
by, say, 3/4 instead of th

Elliptic anisotropy

the f in this term

Inserting the e]

liptic P-wave
in equation (22) i
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Recognizir;g the quantity Viamol(0) from equation (46) gives
mm@=J£ﬁ$&my 6=9, 9
in agreement with the result in (Alkhalifah & Tsvankin, 1995). For future use, Intro-
(60)

Vamo(0)
Vailp) = ,
n( ) \/ 1- p2vn2mo(0)

duce the notation,

for the elliptic result.

isotropy
31) in equation (42) gives
§)2(6 — 9z + 42%))

b (1 + ggi_(f_:__l,_’z———-—-") , (61)

V2P =
° 1—2
2 Ope would have to

Weak transverse

Using equation (

and notation, 2 = (cpp)
p became large enough to appro
the weak limit, V = cp, 8O thisisan u

ach 1/cp. OD

sed the shorth
pusual

ed expansion if
V and in

again u
phisticat
, always p < 1/

where we have
seek a more SO

the other hand
circumstance.
The approximation, n=€— 6, is valid in the weak limit, so equation (61) may be
recast as 2 05
2 I
Vi) =13 (1 +17 +2n F(z)) . (62)
with 6_0z+4 )
F(z) = f_(__:__zi-—zf-)— _ (63)
1—2
Apparently, wé have a disappointing dependence on § in addition to that on Vamol0)
ation (59) in the exact elliptic case does not depend on

since the equ

d to look deeper. Indeed, on introducing

and n. However,
5, we are encourage

Y= (Vnmo(o) p)2 = (CP p)2

esult in the notation
parameters,

(1+26)= 2(1 + 26), (64)
on (60), and agai
ns the expression,

Vnmo 0
Vo) = 22 (69)

ptic T of equati n ignoring
one obtai

extracting the elli
the anisotropy

qua.dratic terms in

V2 (p) = Vale) 0+ 2n F(y))

cement with th nding equation

e correspo
imate,

d which is in agr
the weak limit est

in which & does not appear an
This last equation also implies

h & Tsvankin).

in (Alkhalifa
N —— 66
1% 35 \ Va®) (66)

10



Jack K. Cohen Ray Parameter for TI Media

At the next order in the anisotropy parameters,

_i_r_’_g;)—fR(éa 1, y))s (67)

V2o(p) = Vi(p) (1 +2nF(y) + e

" where,

R(é,n,y) = 66(1— f)(1—y)*(1—2y)
+ny(15 — (69 — 26 f)y + (117 — 68 f)y* (68)
—3(29 — 21f)y® + 4(6 — 5f)y).

Observe that, as the second order small-ray-parameter expansion, the higher order
term here does introduce § and f in violation of the Alkhalifah-Tsvankin theory.
However, observe first the consistency check, that in the elliptic limit, the higher
order vanishes entirely because of an overall factor of n that appears in it. Second,
notice that in the higher order term, the §’s are always multiplied by 1 — f, which
somewhat mitigates their contribution. Indeed, in the common approximation of
ignoring shear speed contributions by taking f = 1, the § terms drop out completely
along with the f contributions. Finally, observe that the function y(1 — 2y)(1 — y)
multiplying the 6 term has absolute maximum value less than 0.1 on the interval
0 < y < 1, again mitigating the effect of § on V2__(p) in this expansion. The overall

observation that using, say, f = 3/4, instead of the true value has little numerical
effect remains true here.
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ABSTRACT

In their studies of transversely isotropic media, I. Tsvankin and his co-workers
have shown the benefits of expressing the P-wave normal moveout velocity in
terms of the zero-offset ray parameter instead of the phase angle, but left for
future work the actual task of doing this. Here, explicit formulas are given for
both the P-wave phase velocity and normal moveout velocity in terms of the ray
parameter. Various results of Tsvankin and others are rederived and, in some
cases, extended, in a uniform manner using these explicit results.

The small ray-parameter expansion of the moveout velocity is valid for dips
up to approximately 15°. In this regime, an analytic solution for the anisotropy
parameter 7, important for time-related imaging is given in terms of observations
of moveout velocity for two different values of the ray parameter.

INTRODUCTION

In their studies of transversely isotropic media, I. Tsvankin and his co-workers
have shown the benefits of expressing the P-wave normal moveout velocity in terms
of the zero-offset ray parameter instead of the phase angle. Here, explicit formulas
are given for both the P-wave phase velocity and normal moveout velocity in terms
of the ray parameter. Various consequences of these results are drawn, including an
analytic solution for the anisotropy parameter 7, important for time-related imaging
is given in terms of observations of moveout velocity for two different values of the
ray parameter.

Throughout this study, Mathematica was used extensively to derive and check re-
sults. In particular, the Mathematica package, Thomsen.m (Cohen, 1995), was used
to convert equation (3) to Thomsen notation, in equation (5), and to obtain various
results in the limit of weak transverse isotropy. Similarly, the use of Mathematica
facilitated computing symbolic derivatives, series expansions, etc.
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PHASE VELOCITY AS A FUNCTION OF RAY PARAMETER

Begin with the formula for P-wave phase velocity in terms of dip 6 (Tsvankin,
1994), equation(6):

2pV2(0) = (C11 + Cas) sin? 0 + (C33 + Cuq) cos® 0
+ {[(c11 — Caa)sin? 6 — (Cag — Cag) cos? 6]’ (1)
+ 4(Ci3 + Cu4)? sin® 4 cos? 0}1/2 .
Use the substitutions
p=sind/V(F), m =cosé/V(6), (2)
to rewrite equation (1) as an equation for the slowness surface:
2p = (C11 + Caa)p® + (Cs3 + Cag)m?
+ {[(Cu — Caa)p* — (Cs3 — C44)m2]2 (3)
+ 4(Ci3 + (744)""p2m2}1/2 .

To obtain a formula for V' (p), follow the recipe given in (Alkhalifah & Tsvankin,
1995), Appendix A. Begin by converting equation (3) to Thomsen notation. After
introducing the on-axis P and S velocities, cp and cg, and the related quantities,

1 c2
k‘:g’ f= _?i1 (4)

obtain the Thomsen-notation form of the slowness surface as

2k = (2= f)m® + (2 + 2¢ — £)p? + /4£(26 + f)m2p? + (f(p?2 — m2) + 2ep?)2. (5)

Next, solve equation (5) for m? and, from equation (2), form

1

V(p) = ————. 6

After some manipulations, find that V2(p) can be written as

Vi) = A1 YVE (1)
where,
A = (2- k-2 fO)P, (8)
B = fk*—4fkle—(2- AP +4[2f(1 = f)le—8) + (= £6)]p", (9)
C = k®—2kep® —2f(e—6)p". (10)
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Before turning to some important special cases, observe the following consequences
of the definitions in equations (2):

1
sinf = pV(p), cosf=mV(p)=4/1—(pV)?2, p*+m’= Ve (11)

These equations will be of great convenience in translating between representations
in phase angle and representations in the ray parameter.

Small ray parameter

First observe that for p = 0,

A = (2-f)k, (12)
B = f%? (13)
C k?, (14)
so that,
oy 2= fk+fk 2k 1 _ ,

V (0) - 2k2 - 2k2 - k - CP’ (15)

leading to the expected result,
V(O) = Cp. (16)

For later purposes, we will need to know the more detailed behavior of V' (p) for small
p. Introducing the dimensionless parameter,

z= (CPP)2a (17)
obtain
V(p) = cp 1462+ ((e—6)(1+26/f) +36%/2) 2
+((e— 6)(1+26/)(56 + 2(e — 26)/f) + 56°/2) 2 (18)
+O(z4)] :

Remark: This expansion shows that the true meaning of “small p” is that z =
(cpp)? << 1. Since V = cp, the inequality can be written as sin?f << 1, so in
dimensionless terms, “small p” represents a small dip angle 6.

Elliptic anisotropy
Next study the elliptic case (6 = €), where

A = (2-fk-2(1- f)op, (19)
B = [fk+2(1- f)&p’]%, (20)
C = k?-—2kép?, (21)

3
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so that,
1 _ %
k—26p2  1—26ckp?’

Vi(p) = (6 =¢). (22)

Tsvankin (1995) gives the corresponding elliptic limit value of V2 in terms of the
phase angle, 8, as
V2%(6) = VZcos? 0 + V3 sin? 9, (23)

where Vp = V(0) and Vy9 = V(7/2) in the phase angle form of V implied by equa-
tion (1). These values are readily found from equation (5). When p = 0, then
m = 1/V(0), and the equation reduces to 2/c% = 2/V?(0), so that

VE) = Cp. (24)
Similarly, when m = 0, then p = 1/Vj, giving 2/c% = 2(1 + 6 + €)/Vgo, so that

Voo = cpV1+ 6 +¢, (25)

which reduces to

‘/90 =cpV 1426 (6 = 6) (26)

in the elliptic limit. This also confirms the known result that V,n,,(0) = Vyo for
elliptically anisotropic media.

With these results in hand, equation (23) becomes
V2 =% +26c%sin? 0 = ¢ + 26c5p’V? (6 =¢). (27)

On isolating V2, equation (22) is verified.
Tsvankin (1995) likewise gives the form

V(0) = cp\1+26sin26 (6 =) (28)
for the elliptic case. Introducing the ray parameter in that expression gives
V2 = c%(1 + 26p*V?) (29)
and, once again, isolating V2 verifies equation (22).

Weak transverse isotropy

The weak TI limit of equation (7) is
V3(p) = ch [1 +2(6+ (e - O)chp’) ] , (30)

V(p) =~ cp [1 +(6+ (e 6)c§,p2)c§,p2] . (31)
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Thomsen’s (1986) expression for this quantity expressed as a function of angle is
V(8) = cp [1 + (6 cos? 8 + esin? 0) sin ] . (32)

Tsvankin (1995) shows that this equation implies

2
PO 1+ 2(c— 0)p'c}], (33)
P

2
sin 0_1——Tp2—

which, in turn, in the weak limit is equivalent to
p’V? = p’ch[l + 26p°ch + 2(e — 6)p*cp). (34)

On cancelling the common factor of p?, this verifies equation (30) and hence also
equation (31).

NORMAL MOVEOUT VELOCITY AS A FUNCTION OF RAY
PARAMETER

The derivation of the normal moveout velocity as a function of ray parameter,
follows closely the corresponding derivation of its expression in terms of the ray angle
given in (Tsvankin, 1995). For convenience, some explicit references are made to
equations in this paper.

First, use equations (11) to find the following relation for dp/d®:

_ _dsinf , dp
mV = cosf = 7 = (pV) 2’ (35)
where, here and below, the prime notation is used for p-differentiation. Thus, we find
that

v _ . dp _ mVV’

AT Iy ST (36)
The derivation of V,,0(p) begins with Tsvankin’s equation (4),
229, dtanvy
2 = 220
Vamo(p) = 3= lim —2 = (37)

The second component of this expression is evaluated using Tsvankin’s equation (6),
equations (11), and equation (36):

Vsin8 + %Vé—cose

V cosf — %sinﬂ

2 dav
mV?2 — pV%%

tany =
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pV(pV) +m?2vV’
mV (pV) — mpVV’
p(pV) +m?V’
m[(pV) — pV’]
PPV +m?V' 4+ pV
mV

V'IVZ 4 pV

mV

V' +pV3
= = (38)

The first component of equation (37) is similarly evaluated using Tsvankin’s equa-
tion (8):

220
to

= Vcosé (1 - tanﬂﬂ)

V db
= mV? (1 - LmVV’)

mV (pV)

VI
= mV? (1 . A )
(pV)
V+pV' —pV’

(V)
my3

= mV?

Using the previous two results in equation (37), find that

mV3d (V'+pV?
(pVYdp \ mV3

Vimo(D) = (40)

or, on eliminating m,
V2 gy = LVIZ@VEd (V4 pVe (41)
e V) dp\v21-(pv)2)’

Carrying out the indicated derivative gives an explicit formula for the normal moveout
velocity as a function of ray parameter:

V2 () = 2(1 — pVAVV" + (3p2V2 — 2)V?2 + V3V 4 V*
mo'P) = (1-p2VH)V(pVy

(42)

6



Before turning to the special cases for V, note that when it is necessary to treat
the general V, it may be better to avoid a layer of square roots by writing V2 (p) in
terms of W = V2

2(1 — PPW)WW” + (4p°W — 3)W™ + dpW2W" + 4W3
2(1 — pPPW)W (W' + 2W)

Vimo(P) = (43)

Small ray parameter

First, use the two leading terms of equation (18) to obtain the approximations,
V=cp+cpép’+0(p*), V' =2%6p+0(%), V'=236+0(p%. (44)

On inserting these small-p approximations into equation (42), find that

V.2o(p) = cp(1 +26) + O(p?), (45)
w Vimo(0) = cpv/T + 26. (46)

Now use the next order terms of equation (18) in equation (42) to get the next
term in V2 (p):

(cpp)®
f

V2 (p)=c% (1 +26 4+ (( —246% + 246€ + f — 86 f + 46%f + 12¢f) ) + O(cpp)“) :

(47)
Remark: Again, the expansion shows that the true meaning of “small p” is that
(cpp)® << 1. Since V =~ cp, and the error is fourth order, this means we can
interpret “small p” as meaning sin*@ << 1. Numerical tests show that using the
small p series for a dip of 15° incurs about a 2% error for typical values of f and 6.

The theory discussed by (Alkhalifah & Tsvankin, 1995) suggests that it is better
to express this result in terms of the parameters V,0(0) and
€e—6
1426

n= (48)

First introduce 7,

Virmo(P) % cp(1+26) + (ch(1 +26) (2460 + f + 26f + 12nf)p?) /f + O(p*), (49)

then use equation (46) to eliminate the explicit appearances of ¢ in favor of V2 (0):

1+26/f

Vinle) = Vins®) | (1 + 1+ 120 22 v 00 ?) + 007 . (60

The importance of the anisotropic parameter 7, is that Alkhalifah and Tsvankin
(1995) have observed, both numerically and empirically, that V2 (p) depends mainly

7
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on 1 and V2 (0). They exploit this reduction to surface-observable parameters to
develop time-domain seismic processing algorithms that take account of transverse
anisotropy. Equation (50) gives analytic support to the Alkhalifah-Tsvankin theory,
since the only deviation to it occurs in the ratio

_1+2/f

1426 (51)

that multiplies . Figures (1) and (2) show plots of this function over the ranges of
f and 6 that are relevant in practice. Observe that the function g(6, f) varies slowly
over these ranges—indeed—ignoring it altogether (i.e., replacing it by the constant
1) is usually justified—at least in the small-angle approximation.

F1G. 1. Plot of the factor g = (1 + 26/f)/(1 + 26) as a function of é for f = 0.7
(dark) and f = 0.8 (light).

The small-ray-parameter result in equation (50) gives a means for estimating 7
from surface observations. For example, suppose one has observations of V,mo(p) at
p = 0 and some other (not too large) value p = p;. The solution for 7 is given by

1 ‘/112mo(p1) - V;IQmo(O) _
(1) 2

e 12¢g

where once again, in the absence of information on 6 and f, the factor g can be
replaced by the constant 1 without much error.

More generally, if one uses two nonzero “small p” values (that is, two separated
dips, each less than 15°), then the estimate for V2 (0) is given by

p%‘/l?mo(pl) — p%‘/r?mo(p?)

V2..(0) =
©) 3 — p}

; (53)
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F1G. 2. Plot of the factor g = (1 +26/f)/(1 + 26) as a function of f for § = —0.05
(dark) and § = +0.1 (light).

and the estimate for 7 is

~ 1 (p% _pg)(‘/l?mo(pﬁ — ‘/;:2mo(p1)) _
¥ Tog ( FV2oo(02) — PVn(1))? 1) ‘ (54)

Finally, note that the full form of the series for V:2_ (p) is given by

Vino(P) = Virno(0) [1+ 02V2no(0)p° + eaVitmo (0)p* + -] (55)
where, as we have seen earlier,
c2=1412gn =1+ 129, (56)
By using the full form of equation (18), we find that
60 60
cs =1+ 6g(6 — 5g)n + —f—gn2 ~ 1+ 6n+ 77;2. (57)

Here, the approximations result from replacing the factor g defined in equation (51)
by the constant 1. Note that the final term in ¢, indicates the first serious divergence
from the theory that V;2,_(p) depends only on the parameters V2. _(0) and 5. However,

this term is multiplied by both p? and n?, which ameliorates the effect of replacing
the f in this term by, say, 3/4 instead of the true value.

Elliptic anisotropy

Inserting the elliptic P-wave phase velocity as a function of ray parameter given
in equation (22) into the general NMO equation (42) gives at once

A (1+20)
VZolp) = (1- 2)1 + 26)chp?)’

(58)

9
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Recognizing the quantity V,m.(0) from equation (46) gives

nmo(O)
Vamo(p) = \/1 P2V

an

(6 =¢), (59)

in agreement with the result in (Alkhalifah & Tsvankin, 1995). For future use, intro-
duce the notation,

an 0
V(o =(0) (60)
\/1 - mo(0
for the elliptic result.
Weak transverse isotropy
Using equation (31) in equation (42) gives
2 () = lc_f,z (1 2(6+(e—6)1z(6z 92 + 4z ))), (61)

where we have again used the shorthand notation, z = (cpp)?. One would have to
seek a more sophisticated expansion if p became large enough to approach 1/cp. On
the other hand, always p < 1/V and in the weak limit, V = cp, so this is an unusual
circumstance.

The approximation, n = € — §, is valid in the weak limit, so equation (61) may be
recast as

Vaal®) = 12 (14 25 + 21 PE). (62

1-

with

2(6 — 9z + 42?%)
1-2 )

Apparently, we have a disappointing dependence on 6 in addition to that on Vme(0)

and 7. However, since the equation (59) in the exact elliptic case does not depend on

6, we are encouraged to look deeper. Indeed, on introducing

y = (Vamo(0) p)* = (cp p)*(1 + 26) = 2(1 + 26), (64)

extracting the elliptic result in the notation of equation (60), and again ignoring
quadratic terms in the anisotropy parameters, one obtains the expression,

Viuolp) = VAG) 1 +21FG),  Valp) = e, (65)

F(z) = (63)

in which é does not appear and which is in agreement with the corresponding equation
in (Alkhalifah & Tsvankin). This last equation also implies the weak limit estimate,

1 ()
e 2F(y)( V@) 1) (66)

10



Jack K. Cohen Ray Parameter for TI Media

At the next order in the anisotropy parameters,

-—4—Zyy—)2R<a, m9), (67)

2
K fa

amo(P) = Vii(p) (1 + 27 F(y) +
"~ where,

R(6,my) = 68(1— f)(1—y)*(1~2y)
+ny(15 — (69 — 26 f)y + (117 — 68 f)y? (68)
—3(29 — 21 f)y® + 4(6 — 5f)y?).

Observe that, as the second order small-ray-parameter expansion, the higher order
term here does introduce 6 and f in violation of the Alkhalifah-Tsvankin theory.
However, observe first the consistency check, that in the elliptic limit, the higher
order vanishes entirely because of an overall factor of 7 that appears in it. Second,
notice that in the higher order term, the é’s are always multiplied by 1 — f, which
somewhat mitigates their contribution. Indeed, in the common approximation of
ignoring shear speed contributions by taking f = 1, the § terms drop out completely
along with the f contributions. Finally, observe that the function y(1 —2y)(1 —y)
multiplying the § term has absolute maximum value less than 0.1 on the interval
0 < y < 1, again mitigating the effect of § on V2 (p) in this expansion. The overall
observation that using, say, f = 3/4, instead of the true value has little numerical
effect remains true here.
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ABSTRACT

In their studies of transversely isotropic media, I. Tsvankin and his co-workers
have shown the benefits of expressing the P-wave normal moveout velocity in
terms of the zero-offset ray parameter instead of the phase angle, but left for
future work the actual task of doing this. Here, explicit formulas are given for
both the P-wave phase velocity and normal moveout velocity in terms of the ray
parameter. Various results of Tsvankin and others are rederived and, in some
cases, extended, in a uniform manner using these explicit results.

The small ray-parameter expansion of the moveout velocity is valid for dips
up to approximately 15°. In this regime, an analytic solution for the anisotropy
parameter 7, important for time-related imaging is given in terms of observations
of moveout velocity for two different values of the ray parameter.

INTRODUCTION

In their studies of transversely isotropic media, I. Tsvankin and his co-workers
have shown the benefits of expressing the P-wave normal moveout velocity in terms
of the zero-offset ray parameter instead of the phase angle. Here, explicit formulas
are given for both the P-wave phase velocity and normal moveout velocity in terms
of the ray parameter. Various consequences of these results are drawn, including an
analytic solution for the anisotropy parameter 7, important for time-related imaging
is given in terms of observations of moveout velocity for two different values of the
ray parameter.

Throughout this study, Mathematica was used extensively to derive and check re-
sults. In particular, the Mathematica package, Thomsen.m (Cohen, 1995), was used
to convert equation (3) to Thomsen notation, in equation (5), and to obtain various
results in the limit of weak transverse isotropy. Similarly, the use of Mathematica
facilitated computing symbolic derivatives, series expansions, etc.
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PHASE VELOCITY AS A FUNCTION OF RAY PARAMETER

Begin with the formula for P-wave phase velocity in terms of dip # (Tsvankin,
1994), equation(6):

2pV2(0) = (Cy1 + Cu4) sin® 0 + (Cs3 + Cy4) cos? §

+ {[(Cu — Cua) sin® § — (Cs3 — Cay) cos’ 0]2 (1)

2
+ 4(Ci3 + Cy4)? sin? 6 cos? 0}1/ .

Use the substitutions
p=sin8/V(6), m =cosf/V(9), (2)
to rewrite equation (1) as an equation for the slowness surface:
2p = (Cu1 + Caa)p” + (Caz + Cag)m®
+ {[(Cu — Caa)p” — (C33 — 044)7”2]2 3)
+ 4(Cus + Caa)pm?} .

To obtain a formula for V(p), follow the recipe given in (Alkhalifah & Tsvankin,
1995), Appendix A. Begin by converting equation (3) to Thomsen notation. After
introducing the on-axis P and S velocities, cp and cg, and the related quantities,

k=2, f=1-% (4)

?P,
obtain the Thomsen-notation form of the slowness surface as

2k = (2~ f)m® + (2+ 2¢ — f)p® + /4£(26 + f)m?2p? + (f(p? — m2) + 2ep?)2.  (5)

Next, solve equation (5) for m? and, from equation (2), form
1
Vip) = 7——. (6)
p? + m?(p)

After some manipulations, find that V2(p) can be written as

v = A2Y8 o
where,
A = (2- k-2 fO)p, (8)
B = fE—dfkle—(2— O +4[20(1— f)le—8) +(c— fOY 5", ()
C = k®—2kep® —2f(e—6)p". (10)



Jack K. Cohen Ray Parameter tor '1I'l Media

Before turning to some important special cases, observe the following consequences
of the definitions in equations (2):

sinf =pV(p), cos§=mV(p)=4/1—(pV)?, p’+m’= % (11)

These equations will be of great convenience in translating between representations
in phase angle and representations in the ray parameter.

Small ray parameter

First observe that for p =0,

A = (2-fk, (12)
B = %, (13)
C = kK, (14)
so that,
oy _ 2—Nk+fk 2k 1,

V (0) = 2k2 - 2k2 - k - cP7 (15)

leading to the expected result,
V(O) = Cp. (16)

For later purposes, we will need to know the more detailed behavior of V' (p) for small
p. Introducing the dimensionless parameter,

z = (cpp)?, (17)
obtain
V(p) = cp[l+62+ ((e—6)(1+26/f) +36%/2) 2
+((e— 6)(1+26/)(56 +2( — 26)/f) +56°/2) 2*  (18)
+0(*)] .

Remark: This expansion shows that the true meaning of “small p” is that z =
(cpp)? << 1. Since V = cp, the inequality can be written as sin? << 1, so in
dimensionless terms, “small p” represents a small dip angle 6.

Elliptic anisotropy
Next study the elliptic case (6 = €), where

A = @-fk-2(1- b, (19)
B = [fk+2(1— )5, (20)
C = k®—2kép? (21)

3
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so that,

2
1 cp

2 —
VAP = 5 o52 = T8 22"

(6 =e). (22)

Tsvankin (1995) gives the corresponding elliptic limit value of V2 in terms of the
phase angle, 6, as
V2(0) = V2 cos? 8 + V2 sin? 0, (23)

where Vp = V(0) and Vgp = V(7/2) in the phase angle form of V implied by equa-
tion (1). These values are readily found from equation (5). When p = 0, then
m = 1/V(0), and the equation reduces to 2/c% = 2/V?(0), so that

‘/0 = Cp. (24)
Similarly, when m = 0, then p = 1/Vjq, giving 2/c% = 2(1 + 6 + €) / Vg, so that

‘/90=CPV]-+5+€a (25)

which reduces to

Voo = cpV1 + 26 (6=¢€) (26)

in the elliptic limit. This also confirms the known result that V,,,(0) = Vg for
elliptically anisotropic media.

With these results in hand, equation (23) becomes
V2 =c% +26cksin? 0 = ¢ + 26cLp’V? (6 =¢). (27)

On isolating V2, equation (22) is verified.
Tsvankin (1995) likewise gives the form

V(0) = cp\1+26sin280  (6=¢) (28)

for the elliptic case. Introducing the ray parameter in that expression gives
V2= c4(1 + 26p*V?) (29)
and, once again, isolating V2 verifies equation (22).

Weak transverse isotropy

The weak TI limit of equation (7) is
V3(p) m ¢ [1+2(6 + (e ~ 6)chp") ], (30)

or
V(p) ~ cp [L+ (6 + (e — 8)c2p?)chp?] (31)
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Thomsen’s (1986) expression for this quantity expressed as a function of angle is
V(6) =cp [1 + (6 cos? 8 + esin? ) sin” 0] . (32)

Tsvankin (1995) shows that this equation implies

2
L "'3’26% [1+2(e — 8)p'ch], (33)

. 20=
sin _——_1—261)

which, in turn, in the weak limit is equivalent to
p’V? = p?ch[1 4 26p°ch + 2(e — 6)pich). (34)

On cancelling the common factor of p?, this verifies equation (30) and hence also
equation (31).

NORMAL MOVEOUT VELOCITY AS A FUNCTION OF RAY
PARAMETER

The derivation of the normal moveout velocity as a function of ray parameter,
follows closely the corresponding derivation of its expression in terms of the ray angle
given in (Tsvankin, 1995). For convenience, some explicit references are made to
equations in this paper.

First, use equations (11) to find the following relation for dp/dé:

dp

dsiné _ dp
do’

- = @V)

where, here and below, the prime notation is used for p-differentiation. Thus, we find

mV = cosf = (35)

that vV . dp  mVV’
@y _mry
&= a8 vy (36)
The derivation of V,n0(p) begins with Tsvankin’s equation (4),
27y .. dtanvy
2 =220
‘/nmo(p) - t0 ’ltl_l;% dp . (37)

The second component of this expression is evaluated using Tsvankin’s equation (6),
equations (11), and equation (36):

Vsiné + %Coso
V cos@ — %sin@
2 dv

mV2—pV?7,-

tany =
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pV + m‘;"—e

pV(pV) + m?VV’
mV (pV) — mpV'V’
p(pV) +m?V"’
m((pV) — pV’]
V' 4+ m2V' 4+ pV
mV

V'|V2+pV

mV
V' +pV3

The first component of equation (37) is similarly evaluated using Tsvankin’s equa-
tion (8):

% = Vecosé (1 -

tan()ﬂ
VvV db

= . (39)

Using the previous two results in equation (37), find that

mV3d (V' +pV®
(V) dp\ mV3

2
Vimo(P) =
or, on eliminating m,

%2mo(p)=vz°1_(pv)2fl—( V' +pV7 ) (41)

V)Y dp \vz/1-(pv)?

Carrying out the indicated derivative gives an explicit formula for the normal moveout
velocity as a function of ray parameter:

V2 () = 20— PP VAVV" + 3p7V2 — 2V + 2pV3V" 4V
nmo(p) - (1 —p2V2)V(pV)' (42)

6
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Before turning to the special cases for V, note that when it is necessary to treat
the general V, it may be better to avoid a layer of square roots by writing V2__(p) in
terms of W = V2

2(1 — p*WYWW" + (4p°W — )W + 4pW2W' + 4W3
V2

molP) = 20— PW)W (oW’ + 2W) 43)

Small ray parameter

First, use the two leading terms of equation (18) to obtain the approximations,
V=cp+cpbp’ +0(p*), V' =2cpbp+0(°), V'=256+0(p%. (44)

On inserting these small-p approximations into equation (42), find that

V2o(p) = ch(1+26) + O(p?), (45)
” Vamo(0) = cpv/T + 26. (46)

Now use the next order terms of equation (18) in equation (42) to get the next
term in V2 (p):

V2 (p) =c% (1 +26 + ((—24(52 + 246e + f — 86f + 462 f + 12ef)@> + O(ch)4) .

(47)
Remark: Again, the expansion shows that the true meaning of “small p” is that
(cpp)?2 << 1. Since V = cp, and the error is fourth order, this means we can
interpret “small p” as meaning sin?d << 1. Numerical tests show that using the
small p series for a dip of 15° incurs about a 2% error for typical values of f and §.

The theory discussed by (Alkhalifah & Tsvankin, 1995) suggests that it is better
to express this result in terms of the parameters Vno(0) and
€e—6
1426

n= (48)

First introduce 7,
V2o(p)  ch(1 +26) + (ch(1 +26)(246n + f + 26 + 12nf)p?) /f + O(*), (49)

then use equation (46) to eliminate the explicit appearances of ¢ in favor of V.2__(0):
P nmo

V() = Va0 | (14 04120 522, 07) + 0000 0)

The importance of the anisotropic parameter 7, is that Alkhalifah and Tsvankin
(1995) have observed, both numerically and empirically, that V2 (p) depends mainly

7



Jack K. Cohen Ray Parameter for TI Media

ino(0). They exploit this reduction to surface-observable parameters to
develop time-domain seismic processing algorithms that take account of transverse
anisotropy. Equation (50) gives analytic support to the Alkhalifah-Tsvankin theory,
since the only deviation to it occurs in the ratio

_14+26/f
T 1426

on n and V2

(51)

that multiplies 7. Figures (1) and (2) show plots of this function over the ranges of
f and 6 that are relevant in practice. Observe that the function g(é, f) varies slowly
over these ranges—indeed—ignoring it altogether (i.e., replacing it by the constant
1) is usually justified—at least in the small-angle approximation.

F1G. 1. Plot of the factor g = (1 + 26/f)/(1 + 26) as a function of é for f = 0.7
(dark) and f = 0.8 (light).

The small-ray-parameter result in equation (50) gives a means for estimating 7
from surface observations. For example, suppose one has observations of Vymo(p) at
p = 0 and some other (not too large) value p = p,. The solution for 7 is given by

1 (VZ.o(p1)—VE,(0)
~ nmo nmo —_ 1 2
% T2 ( PVEL(0) ! (52)

where once again, in the absence of information on § and f, the factor g can be
replaced by the constant 1 without much error.

More generally, if one uses two nonzero “small p” values (that is, two separated
dips, each less than 15°), then the estimate for V2, (0) is given by

2v2 — 2v2
Vn2mo<0) — Y] nmo(plg p; nmo(p2), (53)
P2 —p1
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F1G. 2. Plot of the factor g = (1 +26/f)/(1 + 26) as a function of f for § = —0.05
(dark) and 6 = +0.1 (light).

and the estimate for 7 is

~ 1 (P% - pg)(‘/r\2mo(p2) - ‘/nzmo(pl)) _
= 129 ( (p%‘/n2mo(p2) _p%.vr?mo(pl))2 1) ' (54)

Finally, note that the full form of the series for V.2 _(p) is given by

Virno(®) = Vieno(0) [L 4 c2V;2no (009 + eaVitmo(O)p* + -] (55)
where, as we have seen earlier,
co=14+12gn =1+ 129. (56)
By using the full form of equation (18), we find that
60 60
ca =14 69(6 —5g)n+ —f—g-n"’ ~146n+ 7172- (57)

Here, the approximations result from replacing the factor g defined in equation (51)
by the constant 1. Note that the final term in ¢4 indicates the first serious divergence
from the theory that V2 _(p) depends only on the parameters V2, _(0) and . However,

this term is multiplied by both p? and 7%, which ameliorates the effect of replacing
the f in this term by, say, 3/4 instead of the true value.

Elliptic anisotropy

Inserting the elliptic P-wave phase velocity as a function of ray parameter given
in equation (22) into the general NMO equation (42) gives at once

o B(1+26)
‘/,12mo(p) - (]_ —_ Z)]_ + 26)0%9172) .

(58)

9
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Recognizing the quantity V,mo(0) from equation (46) gives

nmo(O)
Vamo(P) = \/1 —

an

(6 =¢), (59)

in agreement with the result in (Alkhalifah & Tsvankin, 1995). For future use, intro-
duce the notation,

Vnmo 0
\/1 - mo(O)
for the elliptic result.
Weak transverse isotropy
Using equation (31) in equation (42) gives
2(6 + (€ — 6) 2(6 — 9z + 422
Vi) = 12 (14 22020 2), (61)

where we have again used the shorthand notation, 2 = (cpp)?. One would have to
seek a more sophisticated expansion if p became large enough to approach 1/cp. On
the other hand, always p < 1/V and in the weak limit, V = cp, so this is an unusual
circumstance.

The approximation, 7 = € — 6, is valid in the weak limit, so equation (61) may be

recast as 02 5
(1 + 12— + 27 F(z)) (62)

mo(10)

with
2(6 — 9z + 42?)
1—2 )
Apparently, we have a disappointing dependence on § in addition to that on V,,0(0)

and 7. However, since the equation (59) in the exact elliptic case does not depend on
6, we are encouraged to look deeper. Indeed, on introducing

Y = (Vamo(0) p)? = (cp p)*(1 + 26) = 2(1 + 26), (64)

F(2) =

(63)

extracting the elliptic result in the notation of equation (60), and again ignoring
quadratic terms in the anisotropy parameters, one obtains the expression,

Vamo(0)
I—-y

in which 6 does not appear and which is in agreement with the corresponding equation
in (Alkhalifah & Tsvankin). This last equation also implies the weak limit estimate,

1 wno(P)
e 2F(y)( Vi) 1) (66)

10

mo(p) ell( ) (1 + 277 F(y))’ ‘/ell(p) = (65)
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At the next order in the anisotropy parameters,

%R(éa m y))’ (67)

Vimo(P) = V() (1 + 20 F(¥) + 17

"~ where,

R(6,my) = 68(1—f)(1—y)*(1 —2y)
+ny(15 — (69 — 26 f)y + (117 — 68 f)y® (68)
—3(29 — 21f)y® + 4(6 — 5f)y*).

Observe that, as the second order small-ray-parameter expansion, the higher order
term here does introduce § and f in violation of the Alkhalifah-Tsvankin theory.
However, observe first the consistency check, that in the elliptic limit, the higher
order vanishes entirely because of an overall factor of 7 that appears in it. Second,
notice that in the higher order term, the é’s are always multiplied by 1 — f, which
somewhat mitigates their contribution. Indeed, in the common approximation of
ignoring shear speed contributions by taking f = 1, the § terms drop out completely
along with the f contributions. Finally, observe that the function y(1 — 2y)(1 — y)
multiplying the § term has absolute maximum value less than 0.1 on the interval
0 < y < 1, again mitigating the effect of § on V,2__(p) in this expansion. The overall

observation that using, say, f = 3/4, instead of the true value has little numerical
effect remains true here.
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ABSTRACT

In their studies of transversely isotropic media, I. Tsvankin and his co-workers
have shown the benefits of expressing the P-wave normal moveout velocity in
terms of the zero-offset ray parameter instead of the phase angle, but left for
future work the actual task of doing this. Here, explicit formulas are given for
both the P-wave phase velocity and normal moveout velocity in terms of the ray
parameter. Various results of Tsvankin and others are rederived and, in some
cases, extended, in a uniform manner using these explicit results.

The small ray-parameter expansion of the moveout velocity is valid for dips
up to approximately 15°. In this regime, an analytic solution for the anisotropy
parameter 7, important for time-related imaging is given in terms of observations
of moveout velocity for two different values of the ray parameter.

INTRODUCTION

In their studies of transversely isotropic media, I. Tsvankin and his co-workers
have shown the benefits of expressing the P-wave normal moveout velocity in terms
of the zero-offset ray parameter instead of the phase angle. Here, explicit formulas
are given for both the P-wave phase velocity and normal moveout velocity in terms
of the ray parameter. Various consequences of these results are drawn, including an
analytic solution for the anisotropy parameter 7, important for time-related imaging
is given in terms of observations of moveout velocity for two different values of the
ray parameter.

Throughout this study, Mathematica was used extensively to derive and check re-
sults. In particular, the Mathematica package, Thomsen.m (Cohen, 1995), was used
to convert equation (3) to Thomsen notation, in equation (5), and to obtain various
results in the limit of weak transverse isotropy. Similarly, the use of Mathematica
facilitated computing symbolic derivatives, series expansions, etc.
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PHASE VELOCITY AS A FUNCTION OF RAY PARAMETER

Begin with the formula for P-wave phase velocity in terms of dip 6 (Tsvankin,
1994), equation(6):

2pV2(8) = (Cy1 + Cy4) 5in% 6 + (C33 + Ci4) cos® 8
+ { ((Ci1 = Caa) sin?8 — (Cagg — Caa) cos?6]” (1)
+ 4(C13 + Cu4)? sin® 6 cos? 0}1/2 .
Use the substitutions
p=sin8/V(0), m =cosd/V(6), (2)
to rewrite equation (1) as an equation for the slowness surface:
20 = (C11 + Caa)p® + (C33 + Cag)m®

+ { [(Cu — Cu)p® — (C33 — C44)m2]2 (3)

1/2
+ 4(013 + C44)2p2m2} .

To obtain a formula for V(p), follow the recipe given in (Alkhalifah & Tsvankin,
1995), Appendix A. Begin by converting equation (3) to Thomsen notation. After
introducing the on-axis P and S velocities, cp and cg, and the related quantities,

1 c%

obtain the Thomsen-notation form of the slowness surface as

2k = (2 — f)m® + (2+ 2¢ — f)p* + /45(26 + f)m2p? + (f(p? — m2) + 2ep?)2.  (5)

Next, solve equation (5) for m? and, from equation (2), form

1

V(p) = —=. 6

After some manipulations, find that V2?(p) can be written as

Vi) = A2VE 1)
where,
A = 2 Dk—2ec— fE), e
B = PR —afkle—(2-Nop+4[20(1- fle—8) + (e~ 15754, (9)
C = k*—2kep® —2f(e—6)p". (10)
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Before turning to some important special cases, observe the following consequences
of the definitions in equations (2):

1
sinf = pV(p), cosd =mV(p) =4/1—(pV)?, p*+m?= vz (11)

These equations will be of great convenience in translating between representations
in phase angle and representations in the ray parameter.

Small ray parameter

First observe that for p = 0,

A = (2- [k, (12)
B = f%, (13)
C = k% (14)

so that, (

2—fk+fk 2k 1
2 = — = e = - = 2
Vi) =—%5 %" kP (15)
leading to the expected result,

V(0) = cp. (16)

For later purposes, we will need to know the more detailed behavior of V(p) for small
p. Introducing the dimensionless parameter,

z= (ch)2, (17)
obtain
V() = cp[l+6z+ ((e—6)(1+26/f) +36°/2) 22
+ ((e— 8)(1 +28/£)(56 + 2(e — 26)/ f) + 56°/2) 2% (18)
+O(z4)] .

Remark: This expansion shows that the true meaning of “small p” is that 2z =
(cpp)? << 1. Since V = cp, the inequality can be written as sin?6 << 1, so in
dimensionless terms, “small p” represents a small dip angle 6.

Elliptic anisotropy
Next study the elliptic case (6§ = ¢), where

A = @2-fk-201- )5, (19)
B = [fk+2(1— f)ép’P, (20)
C = k- 2k6p? (21)

3
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so that, \
1 cp

2
Vi) = k—26p2 1-— 26c%p?’

(6= e). (22)

Tsvankin (1995) gives the corresponding elliptic limit value of V2 in terms of the
phase angle, 0, as
V2(8) = Vi cos? 0 + Vi sin? 9, (23)

where Vp = V(0) and Vgp = V(n/2) in the phase angle form of V implied by equa-
tion (1). These values are readily found from equation (5). When p = 0, then
m = 1/V(0), and the equation reduces to 2/c% = 2/V?%(0), so that

Vb =Cp. (24)
Similarly, when m = 0, then p = 1/Vjyy, giving 2/c% = 2(1 + 6 + €)/Vqo, so that

Voo =cpV1+é+e, (25)

which reduces to

‘/90 =cpV 1+26 (5 = 6) (26)

in the elliptic limit. This also confirms the known result that V,,(0) = Vo for
elliptically anisotropic media.

With these results in hand, equation (23) becomes
V2 =c% +26chsin’ 0 = c% + 26c2p?VE (6 =¢). (27)

On isolating V2, equation (22) is verified.
Tsvankin (1995) likewise gives the form

V(0) = cpy1+26sin’8 (6 =¢) (28)

for the elliptic case. Introducing the ray parameter in that expression gives
VZ=c3(1 +26p*V?) (29)
and, once again, isolating V2 verifies equation (22).

Weak transverse isotropy

The weak TI limit of equation (7) is

V(p) & cp [1+2(6 + (e — 6)chpP)chp?] , (30)

or
V(p) = cp [1 + (64 (e— 6)c%p2)c%p2] . (31)
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Thomsep,’g (1 986)

2,2

in2g — __p°c2 — S)nd a
SIn“g = %[1 + 2(e 6)p Cpl,

Which, jp turn, ip the weak limjt

(33)
is ®qQuivalent ¢,

5 pzc,z,[l +26p%c2 4 2(e — 6)p4c}‘,]. (34)
On Cancelling the ‘ommon faeto, of p? this Verifies eqQuatiop (30) ang hence 3,
€quatiop (31).

NORMAL MOVEOUT VELOCITY AS A FUNCTION OF RAY
PARAMETER

» We find
— 1 dp _ mVy

_—

tany o Vsin0+%cosﬂ
Vcosﬁ~%sin0

2 av

- y %4 +mVE

dav
my2 _ pVW

5
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\
3
<

= /
mV
(38)

mV3
using T svankin's €qua”

imilarly evaluated

The first component of equation (37) 18 &

tion (8):
2—:—9 — Vcost (1 - taso d;;)
0
_ 2 _ LmVV’
= m (‘ o V)

= mvz__ﬂ’(l’%ﬁ-—"
= %‘% (39)
(37), find that

20" ;ny,;, s (22)

(40)

or, on eliminating M
v i-V)’d ( v +pV° ) @)
V2\/1 (pV)?

nmo(p ) ( V )l
a3 fOI the norma\ m

an explicit formul

oveout

Carrying out thel indicated derivative gives
parameter
V3V’ V4
VR (42)

velocity as 2 function of ray
201 — PV YV + + (3pPV2 - — V242
a-pvV (V)

V2,0(p) =
6
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Before turning to the special cases for V, note that when it is necessary to treat
the general V, it may be better to avoid a layer of square roots by writing V2 (p) in
terms of W = V2

2(1 — pPPW)WW?” + (4p°W — 3)W" + 4pW2 W' + 4W3

Vimo(P) = 2(1 — pW)W (pW' + 2W) (43)

Small ray parameter

First, use the two leading terms of equation (18) to obtain the approximations,
V=cp+cpép’+0(p*), V' =236p+00%), V'=236+00"). (44)

On inserting these small-p approximations into equation (42), find that

Viano(0) = b (1 + 26) + O(p?), (45)
" Vamo(0) = cpv/1 + 26. (46)

Now use the next order terms of equation (18) in equation (42) to get the next
term in V2 (p):

V2 (p)=c% (1 +26 + ((—24«52 +246e + f — 86f + 46%f + 12¢ f)%) + O(cpp)“) )
(47)

Remark: Again, the expansion shows that the true meaning of “small p” is that
(cpp)? << 1. Since V = cp, and the error is fourth order, this means we can
interpret “small p” as meaning sin?d << 1. Numerical tests show that using the
small p series for a dip of 15° incurs about a 2% error for typical values of f and 6.

The theory discussed by (Alkhalifah & Tsvankin, 1995) suggests that it is better
to express this result in terms of the parameters V;0(0) and
€e—6
1426

n= (48)

First introduce 7,
Viao(p) = ch(1+28) + (ch(1 +26)(246n + f + 26f +120f)p?) /f + O(p*), (49)

then use equation (46) to eliminate the explicit appearances of ¢% in favor of V2, (0):

1+26/f

Viale) = Vioa0) (14 0 4 12052 vz 00 + 001800 9] 0

The importance of the anisotropic parameter 7, is that Alkhalifah and Tsvankin
(1995) have observed, both numerically and empirically, that V.2 (p) depends mainly

7
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on 1 and V2 _(0). They exploit this reduction to surface-observable parameters to
develop time-domain seismic processing algorithms that take account of transverse
anisotropy. Equation (50) gives analytic support to the Alkhalifah-Tsvankin theory,
since the only deviation to it occurs in the ratio

_1+26/f
T 1426 (51)

that multiplies 7. Figures (1) and (2) show plots of this function over the ranges of
f and é that are relevant in practice. Observe that the function g(é, f) varies slowly
over these ranges—indeed—ignoring it altogether (i.e., replacing it by the constant
1) is usually justified—at least in the small-angle approximation.

FiG. 1. Plot of the factor g = (1 +26/f)/(1 + 26) as a function of é for f = 0.7
(dark) and f = 0.8 (light).

The small-ray-parameter result in equation (50) gives a means for estimating n
from surface observations. For example, suppose one has observations of V,no(p) at
p = 0 and some other (not too large) value p = p;. The solution for 7 is given by

1 ‘/;12mo(p1) - ‘/;|2mo(0)
L 129( Va0 ) (52)

where once again, in the absence of information on § and f, the factor g can be
replaced by the constant 1 without much error.

More generally, if one uses two nonzero “small p” values (that is, two separated
dips, each less than 15°), then the estimate for V2, _(0) is given by

2172 — P22
‘/n2mo(0) = D3 nmo(plg pé nmo(p2) : (53)
Pz — D1
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F1G. 2. Plot of the factor g = (1 +26/f)/(1 + 26) as a function of f for § = —0.05
(dark) and 6§ = +0.1 (light).

and the estimate for 7 is

1 (0] = P3) (Vio(P2) = Vidoo(P1))
( (p%‘/nzmo(p2) ‘—P%Vnzmo(pl))2 1) : (54)

Finally, note that the full form of the series for V2, (p) is given by

n 129

Vmo(P) = Varnol0) [1 + €2Viino (08 + €aVimo (0)p* + -], (55)
where, as we have seen earlier,
co=14+12gnp =1+ 129. (56)
By using the full form of equation (18), we find that
60 60
C4=1+Gg(6—5g)n+—f—g2z1+6n+7772. (57)

Here, the approximations result from replacing the factor g defined in equation (51)
by the constant 1. Note that the final term in ¢4 indicates the first serious divergence
from the theory that V2 (p) depends only on the parameters V2. (0) and 7. However,
this term is multiplied by both p? and n?, which ameliorates the effect of replacing

the f in this term by, say, 3/4 instead of the true value.

Elliptic anisotropy

Inserting the elliptic P-wave phase velocity as a function of ray parameter given
in equation (22) into the general NMO equation (42) gives at once

o B(1+26)
Vame(®) = T (1 3 28)39)

(58)
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Recognizing the quantity Vm,(0) from equation (46) gives
Vnmo(O)
\/1 - mo(o

in agreement with the result in (Alkhalifah & Tsvankin, 1995). For future use, intro-
duce the notation,

Vamo(p) = (6=¢), (59)

an(O)
e 60
Ven(p) = =20 (60)
for the elliptic result.
Weak transverse isotropy
Using equation (31) in equation (42) gives
2 _ _ 2

V2 (p) = lc_,,z (1+2(6+(e 6)1z£62 9z + 4z ))), (61)

where we have again used the shorthand notation, z = (cpp)?. One would have to
seek a more sophisticated expansion if p became large enough to approach 1/cp. On
the other hand, always p < 1/V and in the weak limit, V = cp, so this is an unusual
circumstance.

The approximation, 7 = € — , is valid in the weak limit, so equation (61) may be
recast as

% 26

nmo(p) 1—2 (1 + i_ + 277 F(Z)) (62)
with

z(6 — 9z + 42%)

F(z) = 1-2

(63)

Apparently, we have a disappointing dependence on § in addition to that on Vjp0(0)
and n. However, since the equation (59) in the exact elliptic case does not depend on
6, we are encouraged to look deeper. Indeed, on introducing

Y = (Vamo(0) p)* = (cpp)*(1 + 26) = 2(1 + 26), (64)

extracting the elliptic result in the notation of equation (60), and again ignoring
quadratic terms in the anisotropy parameters, one obtains the expression,

Vinele) = VAG) 1+ 21 FG), Vo) = e (65)

in which 6 does not appear and which is in agreement with the corresponding equation
in (Alkhalifah & Tsvankin). This last equation also implies the weak limit estimate,

o1 2 o(P)
”~2Hm< VA 1)‘ (66)

10




Jack K. Cohen Ray Parameter for TI Media

At the next order in the anisotropy parameters,

Vino(p) = Vi) (L4 21 F(@) + 572 (6. 0,0), (67)

" where,

R(6,n,y) = 66(1— f)(1—y)3(1—2y)
+ny(15 — (69 — 26 f)y + (117 — 68f)y? (68)
—3(29 — 211)y® + 4(6 — 5f)y).

Observe that, as the second order small-ray-parameter expansion, the higher order
term here does introduce § and f in violation of the Alkhalifah-Tsvankin theory.
However, observe first the consistency check, that in the elliptic limit, the higher
order vanishes entirely because of an overall factor of 7 that appears in it. Second,
notice that in the higher order term, the é’s are always multiplied by 1 — f, which
somewhat mitigates their contribution. Indeed, in the common approximation of
ignoring shear speed contributions by taking f = 1, the 6 terms drop out completely
along with the f contributions. Finally, observe that the function y(1 — 2y)(1 — y)
multiplying the é term has absolute maximum value less than 0.1 on the interval
0 <y < 1, again mitigating the effect of § on V,2__(p) in this expansion. The overall
observation that using, say, f = 3/4, instead of the true value has little numerical
effect remains true here.
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At the next order in the anisotropy parameters,

4
Vio(0) = Vii(p) 1 + 20 F(y) + _zyy_

" where,

R(6,n,y) = 66(1— f)(1—1y)*(1—2y)
+ny(15 — (69 — 26 f)y + (117 — 68 f)y> (68)
—3(29 — 21 1)y + 4(6 — 51)y*).

Observe that, as the second order small-ray-parameter expansion, the higher order
term here does introduce 6 and f in violation of the Alkhalifah-Tsvankin theory.
However, observe first the consistency check, that in the elliptic limit, the higher
order vanishes entirely because of an overall factor of 7 that appears in it. Second,
notice that in the higher order term, the §’s are always multiplied by 1 — f, which
somewhat mitigates their contribution. Indeed, in the common approximation of
ignoring shear speed contributions by taking f = 1, the § terms drop out completely
along with the f contributions. Finally, observe that the function y(1 — 2y)(1 — y)
multiplying the é term has absolute maximum value less than 0.1 on the interval
0 <y <1, again mitigating the effect of § on V2 (p) in this expansion. The overall

observation that using, say, f = 3/4, instead of the true value has little numerical
effect remains true here.
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