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ABSTRACT

Two-and-one-half dimensional inversion of reflection seismic data developed by Bleis-
tein et al. (1987) provides a powerful tool for obtaining correct locations of interfaces
while preserving a model-consistent amplitude. Here, I describe the use of ray tracing in
a triangulated model of the Earth to implement 2.5-D Kirchhoff inversion. The objective
of the inversion is to obtain correct locations of the interfaces and return a true ampli-
tude (angularly dependent reflection coefficient) consistent with the underlying acoustic
theory of wave propagation.

In 2.5-D common-offset inversion, a ray tracer for triangulated media is used to cal-
culate the traveltime and other necessary constituents of the ray theory for a background
model. In the background models, velocity is replaced by sloth (inverse velocity squared).
The medium is assumed to consist of constant-gradient sloth in triangulated regions that
characterize layers separated by arbitrary, curved interfaces. Also transmission losses
through interfaces are taken into account. To improve cpu time, I generate the ray data
for a relatively sparse set of upper-surface grid points and interpolate the data to obtain
values at intermediate grid points. This interpolator produces good reflector maps with
acceptable cpu time. This 2.5-D inversion improves on the previous code which required
a background model in which the propagation velocity was piecewise-constant and the
reflectors were required to extend across the entire model. -
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Chapter 1

INTRODUCTION

The purpose of this project is to update CWP’s currently available 2.5-D Kirchhoff
inversion code CXZCO which was developed by Hsu and Liu (1991) to implement the
2.5-D inversion theory of Bleistein, et al. (1987). CXZCO has some inherent limitations
movitated in part by the design of two-point ray tracing (Docherty, 1988). First, the
background model in CXZCO must consist of constant-velocity layers. Second, interfaces
between the layers are required to cross the entire model. This limits the complexity of
background models that this program can handle. Here, I describe a program, developed
by me, that allows more general background models.

This code is based on the Kirchhoff integral inversion method for common-offset
seismic data (Bleistein et al., 1987). This method treats amplitude in inversion in a
WKBJ-consistent manner so that the output is the reflectivity function. Furthermore,
Bleistein showed that, based on the stationary-phase principle, one can design weights
in the Kirchhoff integral to determine quantities such as the specular reflection angle.
In Bleistein’s integral formulation, the integral requires ray data: traveltime, WKBJ
amplitude and other ray parameters for a background model. Two commonly used
approaches to calculating traveltime and the other quantities in the Kirchhoff integral
are ray tracing and finite differences applied to the eikonal equation. Here, I use the
former, which allows for multiple arrivals at any point. This is much more difficult for
finite difference traveltime solvers.

Hale and Cohen (1991) developed software to generate data bases for two-dimensional
computer models of complex geology. Their method uses a triangulation technique de-
signed to support efficient and accurate computation of seismic wavefields for models
of the earth’s interior. Subsequently, Hale (1991) used this triangulation approach to
perform dynamic ray tracing and create synthetic seismograms based on the method of
Gaussian beams. Then, Riiger (1993) generalized that code. Based on this earlier work,
I have implemented 2.5-D inversion for more complex models. The ray tracer used in
this thesis is derived from code developed by Riiger, but I do not use the Gaussian beam
option of his code for amplitude calculations.

In my adaptation, it is necessary to calculate ray data at output grid points. Usually,
the rays do not pass through these points, so it is necessary to interpolate to obtain ray
data at the grid points. Furthermore, the computation cost of traveltime and amplitude
for every trajectory from surface grid points to subsurface grid points could dominate the
total calculation cost of the Kirchhoff integral method. Thus, to speed up the Kirchhoff
integral method, I apply a “parallel interpolation” scheme developed by Liu (1993) after
computing ray data for only a limited set of surface grid points.

In this work, the velocity model is replaced by variable sloth layers separated by
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interfaces that are more complex than those used in CXZCO. Sloth is inverse-velocity-
squared. For example, the lens-shaped structure and pinchouts shown in Figure 1.1 can be
treated with the new code, but can be only poorly represented with the previous code. As
we can see in this figure, interfaces do not need to cross the entire model. Furthermore,
the velocity can vary both vertically and horizontally within layers, whereas, CXCZO
requires constant velocity within layers. In summary, this thesis synthesizes the 2.5-D
inversion theory previously implemented in CXZCO and Riiger’s dynamic ray tracing to
produce a 2.5-D inversion code that is applicable to a more general Earth model than
that of the predecessor.

In Chapter II, I describe an inversion implementation that takes advantage of dy-
namic ray tracing to obtain geometrical spreading. In Chapter III, ray tracing in triangu-
lated models is described. In Chapter IV, I describe the shooting scheme and transforma-
tion from the triangulated system to a uniform grid and parallel interpolation, designed
for efficient use of cpu time. In Chapter V, I show examples of inversion of data from a
horizontal-layer model, a commonly-studied synthetic model generated for Marathon Qil
Company, a lens-shaped model, a salt dome, a physical tank model, and the Marmousi
model.

4

F1G. 1.1. Lens-shaped structure and pinchouts. Lithological interfaces are represented
by black lines. The shading denotes the seismic velocity field. The white lines are edges
of auxiliary triangles used in the model building.



Chapter 2

ALGORITHM FOR 2.5-D COMMON OFFSET INVERSION

2.1 Introduction

In this chapter, I derive an inversion formula to be programmed for the implementa-
tion of 2.5-D common offset inversion. The earlier code (Hsu and Liu, 1991) used the rate
of change of ray direction, dB(x)/d¢ [8(x) is the incidence angle between the ray and
the upward vertical direction at depth point @; ¢ is the location of the midpoint between
source and receiver], to characterize geometrical spreading, which, in turn is used to cac-
ulcate the ray theoretic amplitude along a ray. Here, I take advantage of dynamic ray
tracing to obtain the geometrical spreading factor directly. Also, in contrast to CXZCO,
where rays are shot upward, here I shoot rays downward. The computation of ray data
used here follows the method of Cerveny (1981).

2.2 Geometrical spreading

Geometrical spreading characterizes the changes in amplitude along the geometrical
optics rays. In CXZCO (2.5-D common-offset inversion code in constant-velocity, layered
medium), geometrical spreading is approximated by 0f(z)/9¢. However, in dynamic ray
tracing, geometrical spreading is one of the quantities naturally calculated along each ray.
I describe here this alternative approach to characterization of geometrical spreading.

First, consider the Jacobian of the transformation from Cartesian (z, 2) coordinates
to ray coordinates, given by

T=1 58 85| 21)
9y 9y

where £ and ~ are ray coordinates and, here and below, | | denotes determinant of the
array. The ray coordinate - selects one ray from the whole system of rays. The coordinate
¢ specifies the position of a point on the selected ray. In this discussion, £ will be the
arclength along the ray measured from an arbitrary reference point. The function J
measures the expansion and contraction of the ray tube. When two neighboring rays
intersect, the function J vanishes, J=0. Such points are called caustic points. In shadow
zones, where rays do not exist, J is not defined. The function J can be simply expressed
in “ray-centered” coordinates (¢,n). J is particularly easy to compute directly on the ray
), where n=0. As seen in Figure 2.1, the coordinate £ measures the arclength along the
ray §) from an arbitrary reference point; n represents a length coordinate in the direction
perpendicular to  at £.

Let us first perform the transformation from (z,2) coordinates to the ray-centered
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wavefront

F1G. 2.1. Three coordinates systems are depicted; ray coordinates (€,7), ray-center
coordinates (¢,n) and Cartesian coordinates (z,z).

(¢,n) coordinates, and then from (¢,n) coordinates to the ray coordinates (&,y). This

discussion follows Cerveny (1981). The Jacobian of the transformation from (z, 2) to (¢,
7) coordinates is then expressed as a product of two Jacobians,

oz 0z ox Oz 9¢ 0On
— o | _
J = g;&; Bg —| oz zl o) gg (2.2)
Iy Oy gn on |l | Oy Oy
As the ray-centered coordinate system is orthogonal with scaling factors h,1, we have
oz 0Oz
: S5 |=h (2.3)
on 9n
On the ray Q, h=1, 0¢/9¢=1, On/0¢ = 0. From these results, it follows that
on

(2.4)

This is the expression of choice for the function J in the ray-centered coordinates (£,n)
connected with the ray €2, as measured directly on 2. Following Cerveny (1981), we
introduce the system



dn fi_z_’_’.‘. _ _Unn

— = e 2.

to describe the distance, n, to a neighboring ray )., near the central ray. Here p, is the
n-component of the slowness vector p. Differentiating this system with respect to y, we
obtain

dJ dP Unn
where
on Op,
= - P == 2.

Here, J again denotes the Jacobian, and P is an auxiliary function (the derivative of the
normal component of the slowness vector with respect to the ray parameter v). We will
see in the following chapter that J and P are calculated by dynamic ray tracing.

2.3 Formulation of 2.5-D Common-offset Inversion

Docherty used 3, and f, for the take off angles from source and receiver points.
Bleistein and Cohen introduced §(z, z) for the output of their inversion formalism. For
historical reasons, I use the same symbols to honor their contributions. The distinction
should be clear in context.

The computational formula derived by Docherty(1989) for f(zx, 2) for a flat obser-
vation surface is

1
B(z) = S / dEK (24,2, ) D(7, + T, ), (2.8)
where
1T 1[08, 9B, _
K (@ 0,2) = | -+ 5’[“@% ¥ aﬂg] Az, 7)Ao, )] (2.9)
D(t,§) = —/—i—-/ dwiwe W@z T @2y (o £), (2.10)
f

Here, z=(z, 2), shown in Figure 2.2, is the specular reflection point on the reflector, and
f(x) depicts reflectors as bandlimited delta functions that peak on the surface of each
reflector. These are called singular functions of the reflectors. The peak amplitude of
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each singular function is predicted by the inversion theory described in Bleistein (1986).
'The normalization provided by the formula ensures that this peak value is the angularly-
dependent reflection coefficient, R(x,6), at incident angle with respect to normal, 6, of
the specular ray for a given source/receiver pair in the survey. The specular choice is con-
sistent with the background velocity model; o, and o, are ray-trace running parameters
from receiver and shot to output point, respectively. Also shown in Figure 2.2, z, and z,
are the locations of shot and receiver, respectively; 3, and 3, are the angles between ray
and upward vertical at @, respectively; £ is the location of the midpoint between source
and receiver; Us(w, ) denotes the observed data at x, due to the source at z,; T(x, z,)
and 7(x, z,) are traveltimes between output points  and shot at z, or receiver at z,.

X & X

F1G. 2.2. Geometry of ray data.

The scaling factor, Ay, it is easiest to explain for synthetic data. One assumes a
bandlimited delta function as the time signature of the source. That is, in the frequency
domain, the Fourier transform of the source is a symmetric, real, nonnegative function,
F(w). Ay is the area under F(w) for positive w. For field data, the value of Ay is
harder to define. It should again be the source signature, which now has to be estimated
from the actual data. Further, given an estimate of the source signature, it may be
further modified by filtering in the frequency domain to zero out data at the ends of the
bandwidth that are judged to be unreliable. The product of the source signature and
this filter would then play the role of F(w) in the synthetic data. Also, we have

1 c(x) 1/2 a0, 1/2
Az, z) = 4_7r[03cos,3(:c3)} [6{} T(zs, ),



Az, @) = 4—17; [Or cf,(fﬂ)@,)] v {%ﬂ P e a) 2.11)

Here, c(z) is velocity at output point @; B(x,) and B(z,) are the angles between rays
and downward vertical direction at z, and z,, respectively. Also

Q=1 cosb;,
N cos B, 1/2
ne)= 1] Ki < I 2.12
T(z,,x) igl '[cos&,,] (2.12)

In these last equations, T'(z,, ) and T'(z,,«) denote transmission effects on up-going
rays from x to z, or x, respectively; K;, and K;_ are transmission coefficients at each in-
terface; 6, and 6;, are transmission angle and incidence angles with respect to the normal
direction corresponding to the shot at each interface; 6;; and 6; are transmission angle
and incidence angle with respect to the normal direction coresponding to the receiver at
each interface. By using A, and A, as defined by (2.11) to substitute for 93,/0¢ and
dp,/0€ in (2.9), we obtain

2 2
. A(zs, ) 05 Cozﬂ(xs) + Az,  x) 0, Cogﬂ(xr) , (2-13)
T(zs,x) T(z,,x)
Furthermore, from (Bleistein, 1986),
Az, @) = A(e, 5,) = ——=T(, )
8 - yvs) 4’"‘@_']: ’ 8/
Az, @) = A@,5,) = ——T(x, 7.). (2.14)

4o, J,

Here, T'(x, z,) and T'(x, z,) denote transmission effects on down-going rays, J, and J,. de-
note the Jacobian functions for shot and receiver respectively. Thus, the final expression
for the inversion is

plx) =

c

2‘(/3; / dEK (z,,7,,2)D(1, + 1,,€), (2.15)




where

_ | [ T(x,zs) cos B(zs) Js T'(x, z,) cos f(z,)
L G [\/;:T(:c,xr)T(xs, 22 T \/J_rT(m,:vs)T(x,,w)2 » (216)

1 .
D(t,¢) = ;?f-/ dw/iwe™ (@) +7(@T 2] (w,&). (2.17)

"The preprocessing of (2.17) is carried out by a program developed by Sumner (1990). My
code uses the output D(¢,£) to compute f(z) in (2.15). This is the inversion formula that
I will use to calculate R, the angularly dependent reflection coefficient at each interface.
Also, I calculate a second integral which yields R cos# as output, where @ is the incidence

angle with respect to the normal direction at output points. Following is the formula for
Rcos#

227

A=)

/df,Kl (@, Ty, &) D(7y + 73, &), (2.18)

where

0, — 0.
2

Ky (s, Tr, @) = cos ( ) K (s, 2r, @). (2.19)

Here, the function f; () is like 8(), except for the peak value that it produces. The peak
value of §;(x) is Rcosf. Thus, the ratio of these two outputs yields an estimate of cos¥,
while the peak value of f(x) yields an estimate of R, itself; §, and 6, are incidence angles
at & with respect to horizontal direction from shot and receiver, respectively, shown in
Figure 2.2. Note that 8, and 6, are two angles that I use to calculate 8, which is the
incident angle of the specular rays from source or receiver, relative to the normal to the
reflector. That is, at specular (8, — 6,)/2=6.
In the next chapter, I describe ray tracing in triangulated models.



Chapter 3

RAY TRACING IN A TRIANGULATED MODEL

3.1 Introduction

In this chapter, I describe ray tracing in a triangulated model, developed by Hale
(1991). The earth model used by this method is characterized by sloth, which is the
inverse of velocity-squared. In a triangulated model, each triangle has constant sloth
gradient. This choice allows closed-form solutions for the elements of the ray data that
we need, such as the ray trajectory, traveltime and ray parameters, etc. Included among
these is a geometrical spreading factor, as well. More detail about ray tracing in trian-
gulated models is available in Hale (1991) and Riiger (1993).

3.2 Ray tracing equation

Following Cerveny (1987), we express the ray tracing equations in two dimensions
as follows:

dr

% = Pz,

dz

d_d_ = Dz,

dp, _10v™?

de 2 9z’

dp, 10v~?

do — 2 8z’

gi- =v72 (3.1)

Here v denotes velocity, z and z denote the Cartesian coordinates of the ray, and p, and
p, are the £ and 2z components, respectively, of the slowness vector. Furthermore, t is
traveltime, and o is a running parameter that increases monotonically along the ray, as
implied by the last of equations (3.1).

The reason for writing the ray tracing equations in this form is that the partial
derivatives of v~2 in (3.1) are constants when v~2 is a linear function of z and z. Specif-
ically, we define “sloth” to be the inverse of velocity-squared; that is,

s(z,2) = v(z,2) 7%, (3.2)




and introduce the linear approximation,
s(x,2) = sg0 + ST + 5.2, (3.3)

in each triangle with sgg, s, and s, constants. Then the solutions to the equations (3.1)
in each triangle are

(o) = xz(09) + p(00)(0 — 09) + %s,x(a - 00)2,
20) = 2(00) +7:(00)(0 = 00) + 7.0~ o0},
pw(O') - px(UO) + %s,x (0 - 00)7

p:(0) = Pulon) + 35400~ ),

t(o) = t(oo) + [s00 + 5.2(00) + 5,.2(00)](0 — 00) +

15.4P2(00) + 5,22 (00))(0 = 00)" +

(5224 5.2) (0 — a0 (3.4)

The ray path described by equation (3.4) is a parabola in ¢, and the intersection
of this ray path with the linear edge of a triangle may be easily computed by solving a
quadratic equation in 0. The number of real roots of this equation is either zero, one,
or two, corresponding to the number of possible intersections. To determine the edge at
which a ray exits a triangle, one must solve three quadratic equations for o, one for each
edge of the triangle. Then, letting oy denote the value of o at the point where a ray
enters the triangle, the value of ¢ where the ray exits is the smallest real root of these
three quadratic equations that is greater than 0. The value of o at the exit point then
yields the parameters in equations (3.4) at that point.

3.3 Dynamic ray tracing equations

The equations of the previous section do not include the necessary variable to de-
termine geometrical spreading. Here, I extend the dependent variable set to include
geometrical spreading by using dynamic ray tracing. This method also detects caustics.
Dynamic ray tracing in two dimensions requires the solution of the following system of
coupled differential equations (Cerveny, 1987):

dq

do p

dp U

Zi; = “‘53—61, (3-5)
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where again v,,, denotes the second partial derivative of velocity v with respect to dis-
tance n in a direction normal to the ray. Given a central ray described by equation (3.1), e
parameters p and ¢ describe a nearby (paraxial) ray. Specifically, p is the partial deriva- !
tive of traveltime t with respect to n for the paraxial ray, and ¢ is the normal distance n
from the central ray to the paraxial ray. The ratio p/q is the second partial derivative of -
t with respect to n, and is related to the curvature of the wavefront normal to the ray. ‘
Also, from this pair of equations, if we use do = vd{, we obtain (2.6) with J replaced by T
g and P replaced by p. Thus, ¢ is just the Jacobian required in our inversion. For the 4 |
———-linear sloth used here; -

dg
EE = D
dp _ 3(szp.— s,,p,g)2
do 4 52 e (36)
The solution to these equations is
do) = —= 50+ 2T =to(00) 4 plon) o — )] + (= = s2)a(on) (o - 00)’
/505 0 5 q\00) T P\0o 0 4sq 2)4\0o 0
_ 1 81 812
pe) = = [iso sslo —aulplon) + (5 + (5 — 250 = ot
1+ 2s2(0—0 e
(2RO = 0y g, (37) T
S f
where sg, s1, s are constants defined by
so = s[z(o0),2(00)],
s = s,sz(UO) + S,zpz(aﬂ)a
1
sg = Z(s,m2 +5.7%). (3.8)
Also, from (3.3) (3.4) and (3.8), one can show that
s = s[z(0), 2(0)] = 50+ 51(0 — 00) + 82(0 — 0¢)” (3.9)

Given the values ¢(0g) and p(og) at the point where a ray enters a triangle, equations
(3.7) yield the values g(0) and p(o) at the point where the ray exits that triangle. In
summary, we use (3.4) and (3.7) to obtain the ray path, the function .J and other ray data
that we need at specific nonuniformly spaced outpoints. In the next chapter I describe
the problem of obtaining ray data at grid points.

3.4 The KMAH index

In dynamic ray tracing a quantity called the KMAH index (Hale, 1991) records the
number of times that a paraxial ray from a point source crosses its central ray. The
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KMAH index plays an important role in situations in which the ray family has caustics
or envelopes. We tabulate the KMAH index by counting the zeros of g(c) along the ray.
The KMAH index counts the number of phase shifts of 7 /2 required in the solution for
rays that pass through caustics.

Most applications of dynamic ray tracing equations require the solutions g(o) and

p(o) of equation (3.5) for the initial conditions ¢(0) = 0 and p(0) = 1. Following Cerveny
et al. (1982) the solutions corresponding to these initial conditions are usually labeled
g2(0) and p,(0), the solutions corresponding to a point source.
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Chapter 4

DETERMINATION OF RAY DATA ON A UNIFORM GRID

In this chapter, I describe the process used to transform ray data from a triangu-
lated system to a uniform grid. I also describe parallel interpolation for efficiency in
computation.

4.1 Transformation from a triangulated system to a uniform grid

Transformation of ray data from a triangulated system to a uniform grid is crucial
to my application of this modeling technique to inversion. Here, I call the set of source
or receiver grid points on the upper-surface S and the number of such points, N,. Also,
I call the set of grid points in the z-direction, X and the set of grid points in the 2-
direction, Z with the number of them N, and N, so that the total number of such grid
points, (z, 2) is N, x N,. We denote the combined set of depth points by {X,Z}.

Normally, I set the increment dz, to be one quarter of wavelength at the dominant

frequency of the data. For dz, the increment in the z—direction, I usually use the same
value as the midpoint spacing for the desired data on the upper-surface, although these
two values can be chosen independently. The objective is to obtain ray data—traveltime,
amplitude, etc.—from each point in S to each point in {X,Z}. The structure of the
technique for achieving this is described as follows.

1. Shoot rays from point s in S into the subsurface at some fixed distribution in take
off angles, typically in approximately one-degree increments.

2. Determine the triangles of the triangulated model that contain horizontal line seg-
ments at a given depth z in Z. By solving equations (3.4) and (3.7), evaluate the

ray data at the intersections-of the rays-with-the line at-depth z. For example, in
Figure 4.1, the depth 2 was chosen as 3 km (indicated by the horizontal line at 3-km
depth). The figure shows the triangles that the horizontal line at this depth crosses
and it shows the intersections of the rays from a surface-point s=3.5 km with this
line. In this way, the intersection points with all grid depths z are identified.

3. Since the intersection points (z values at depth z) are still not grid points, I use
linear interpolation to determine ray data at grid points from ray data at inter-
section points. In Figure 4.2, the rays are depicted schematically as straight lines
with arrows, and the grid points are shown as circles.

This scheme cannot interpolate properly in the vicinity where rays turn from down-
ward to upward. Near turning, the distance between two intersection points is too large
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Distance (km)

0 ' megiEn —L- |

Depth (km)

FIG. 4.1. Shooting rays from surface.

Surface

F1c. 4.2. Interpolation from non-uniform points to grid points.
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for interpolation. To deal with rays propagating nearly horizontally, I apply a 2-D in-
terpolation technique. That is, in addition to horizontal interpolation, I use vertical
interpolation to improve the accuracy of the interpolated values. Consider Figure 4.3,
which depicts two nearly horizontal rays near a grid point which is represented by a
circle. I obtain the ray data at four points: two at the level of interest, one level higher
and one level lower. In the figure, these points are labeled 1,2,3,4. I linearly interpolate
ray data at points 3 and 4 to the grid point and retain the distance between points 3
and 4, d3 4, as well. Similarly, I use the points 1 and 2 to obtain interpolated ray data at
the grid point and I compute d; 2, which is distance between points 1 and 2. I compare
dy2 and ds 4. If dy 2 is smaller than d34, I would use the interpolated values from points
1 and 2 to provide ray data at the grid point.

Fi1G. 4.3. 2-D interpolation.

4.2 Parallel interpolation between source points

The use of ray tracing to implement inversion basically involves two major steps: (1)
computation of ray data for grid points, and (2) computation of the integral in equation
(2.15). If the scheme described in the previous section were carried out for each point
in S and each point in {X, Z}, then N, x N, X N, sets of ray data would need to be
computed. This may require an unacceptable amount of CPU time and, as will be shown
below, is often unnecessary. Instead, we compute ray data for only some subset of S, say,
every fifth or every tenth point, and all of {X, Z} and then use a parallel interpolation
scheme developed by Liu (1993) to fill in the missing data for the remainder of the points
in § x {X,Z}. [The program has a parameter called SKIP that provides the user the
option of choosing this more sparse set of points as a fraction (1/skip) of N,]. The parallel
interpolation can be described as follows.

15




1. Define the spacing of selected sparse initial surface-points, which can be either shot
or receiver.

2. Obtain ray data for points in this sparse subset of S. Suppose that S is a point
in S, not in the sparse subset and that S} and S are points in the sparse subset
for which ray data have been calculated, by the above description, for all points at
depth in the grid {X, Z}. Define L as the distance from S to S; and Ls to be the
distance from S to S, (Figure 4.4). At a depth z, we need ray data at each z on the
grid for all source points between S; and Sy. Given a value of  on the grid, define
z1 to be the point on the grid at distance L; from z—to the left of z, the same
distance by which S is to the left of S—and x5 to be the point a distance L, from
T on the other side. The ray data from S; to z; and from S5 to x5 are known since
S1 and Sy were part of the sparse set of initial points of rays, and (z, 2) and (z5, 2)
are points on the grid, {X, Z}. Use these ray data to obtain the corresponding data
from S to (x,z) by interpolation. This step is illustrated in Figure 4.4.

The formula used for this interpolation is

p(z,2,5) = Ap(zg, 2; S2) + (1 — Np(a1, 2; S1), (4.1)
where, p is any element of the ray data and A = L, /(L; + Ls).

3. Repeat step 2 for each x at depth z.

4. Repeat steps 2 and 3 for each z.

FIG. 4.4. Parallel interpolation
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When the velocity is only depth-dependent, this linear interpolation is exact because
the ray data are invariant for lateral displacement; that is for any h,

p(z+h,z;S +h) = p(z,25) (4.2)

For a general velocity function v(z, z), the interpolation error depends on O0v/dz, but
the parallel interpolation should work with some degree of success so long as the lateral
variations are not too large. In the next chapter, using cpu time without parallel inter-
polation as a benchmark, I show results that demonstrate reduced cpu time with little
loss in accuracy achieved by this interpolation method.
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Chapter 5

COMPUTER IMPLEMENTATION

In this chapter, I present the results of tests of the inversion program. The objective
of these examples is (i) to test the accuracy of reflector location, (ii) to show the accuracy
of the prediction of the angularly dependent reflection coefficient, and (iii) to test the
accuracy of using a sparse set of initial points on the upper-surface followed by interpo-
lation to generate ray data at all grid points. In the first four examples, model velocity is
used for inversion; in the last two examples, velocities obtained by Liu’s velocity analysis
(1991 and 1995) are used to obtain images of reflector location.

5.1 Example 1

This example provides a simple test of positioning and amplitude accuracy. To test
amplitude accuracy in Bleistein’s theory (1986), we need reliable amplitude in data for
Us(w,€) in (2.17). In this example and next example, I use CSHOT (Docherty, 1991),
which uses two-point ray tracing to generate amplitude 2.5-D synthetic data. Here,
I chose a simple model consisting of constant-velocity layers, as shown in Figure 5.1.
Based on Snell’s law and the formula for the reflection coefficient, I can obtain analytic
results for R and Rcos# at each point on each reflector. For the single offset used in this
example, these values are constant on each reflector. In this model, layer velocities are
5, 6 and 7 km/s from the shallowest to the deepest layer, respectively. Figure 5.2 shows
model data with offset=2 km. The inversion produces two outputs: one for S (z), the
other for f;(x). :

The output for B (x) is similar to #(z) in the sense that it provides a reflector map;
the amplitudes differ by the factor cos(, —#6,.)/2 which appears in the integrand in (2.18)
for Bi(z), but not in the integrand of (2.15) for B(x). Since the model velocity is used
for this example, so location of the peak amplitude of the output on each reflector is
virtually at the correct depth and the peak values on each reflector provide estimates of
R and Rcosé.

For the first interface, R is 0.144, Rcos8 is 0.120, and 6 is 33.7 degrees. In my
result, R is 0.148, Rcos# is 0.123 and 6 is 33.8 degrees. The percentage errors here are
2.8, 2.7 and 0.2 percent respectively. For the second interface, the exact value of R is
0.095, Rcosf is 0.087 and @ is 24.3 degrees. In my result, R is 0.092, R cos# is 0.084 and
0 is 24.35 degrees. The percentage errors here are 2.4, 2.7 and 0.2 percent, respectively.
The fact that the inversion code has taken transmission losses into account is important
to the accuracy obtained for values at the second interface. The code thus produces
output that is consistent with Bleistein’s theory (1986). It provides both a reflector map
and model-consistent estimates of R and cosf as long as the background velocity used
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for the inversion is the correct one for the layered medium. Also, since this is analytic
test of amplitude, we know the amplitudes in the input data very well. In practice,
we do not know amplitude of input data perfectly. However, from the results here we
can be confident that the inversion treats relative amplitude properly. Therefore, based
on relative amplitude of output, we can at least do bright-spot analysis and amplitude-
versus-offset (AVO) analysis.

5.2 Example 2

In this example, to test amplitude, I use synthetic data for an experiment similar to
the “Marathon tank model,” which has parameters of a physical tank model provided by
Marathon Oil Company (Liu, 1991). The model is illustrated in Figure 5.5. Since this is
a more complex model than that of Example 1, it is more difficult to directly compute
R and 6 as benchmark for our tests. Therefore, let us use an indirect test of accuracy
based on the formula for the reflection coefficient (Bleistein, 1987),

R(a,6) = cosf — /v} v} — sin 62 (5.1)

cosf + /v?/v3 — sin §?

Here, x is the location of reflector, v; and vy denote velocities above and below the
reflector, respectively, R(x,0) is the reflection coefficient at & at specular incidence angle
6. From the discussion following equation (2.17), the peak values of f(x) and £;(x) on
the reflectors provide values of R and Rcosf. Given these values and using the model
value for the velocity above the reflector, one can compute the velocity below the reflector
from (5.1) and compare with the exact value.

This is a constant-velocity-layer model; the velocities are 11.75, 15.75, 22.40 , 19.90
and 30.00 kft/s, from the shallowest to deepest layers. Figure 5.6 shows, for offset 2400 ft,
synthetic data generated by CSHOT ( Docherty, 1991), which uses two-point ray tracing
to generate the data. Figure 5.7 and Figure 5.8 are the inversion results for R and R cos#,
again based on computations in which the background velocity is known exactly.

To test amplitude, I chose a few trace locations to estimate the velocity below
each interface, assuming I know the velocity above. Tables 5.1 through 5.5 compare my
estimated velocities vy with the true layer velocities v,.

The velocity estimates are good except at a few locations. At point (3.2,8.8) the error
is greater than 10 percent. With the aid of Figure 5.9, we can provide an explanation
of this large error. The figure shows normal rays from the sawtooth reflector to the
upper-surface. For zero-offset data, these would be the specular rays for this model from
this reflector. We expect that, qualitatively, the features of these rays are similar to the
analogous features for the specular rays for small offset. For the point (3.2,8.8), specular
rays for this reflection point emerge at the upper surface near the edge of the model. If
they were right at the edge, Bleistein’s (1986) theory would predict peak amplitudes for
B(x) and B;(z) to be R/2 and R/2cosf. Therefore I used twice the peak amplitudes,
replacing 0.0434 and 0.0430 by 0.0868 and 0.086, as values of R and Rcosf. Using these
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Table 5.

=

output points (kft) R Rcosf | vy (kft/s) | vy (kft/s) | error %
(3.2, 2.8) 0.1562 | 0.1433 15.75 16.04 2
(3.2, 4.4) 0.1809 | 0.1685 22.40 22.49 0
(3.2, 6.4) -0.1789 | -0.1757 15.75 16.02 2
(3.2, 8.8) 0.0434 | 0.0430 19.90 17.31 13
(3.2, 11.3) 0.1819 | 0.1802 30.00 28.72 4.3
Table 5.2.
output points (kft) R Reos@ | vy (kft/s) | vy (kft/s) | error %
(7.2, 2.6) 0.1786 | 0.1487 15.75 15.98 1
(7.2, 3.8) 0.1775 | 0.1560 22.40 21.86 2.4
(7.2, 6.0) -0.1681 | -0.1623 15.75 16.78 6.5
(7.2, 8.8) 0.1226 | 0.1214 19.90 20.21 1.5
(7.2, 11.3) 0.2366 | 0.2355 30.00 32.14 6.6
Table 5.3.
output points (kft) R Rcos@ | vy (kft/s) | vh (kft/s) | error %
(8.8, 2.4) 0.1790 | 0.1539 15.75 16.20 2.5
(8.8, 3.3) 0.1533 | 0.1332 22.40 21.19 5.3
(8.8, 5.6) -0.1670 | -0.1612 15.75 16.82 6.7
(8.8,9.2) 0.1044 | 0.1032 19.90 19.52 2.5
(8.8, 11.3) 0.1172 | 0.1148 30.00 25.36 15.5
Table 5.4.
output points (kft) R Reos@ | vy (kft/s) | vy (kft/s) | error %
(19.2, 3.2) 0.1590 | 0.1483 15.75 16.16 2.6
(19.2, 4.0) 0.1809 | 0.1611 22.40 22.06 3.6
(19.2, 5.9) -0.1605 | -0.1573 15.75 16.68 6.0
(19.2,9.2) 0.1010 | 0.1007 19.90 19.31 3
(19.2, 11.3) 0.1689 | 0.1672 30.00 27.98 6.6
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Table 5.5.
output points (kft) R Reos@ | vy (kft/s) | vy (kft/s) | error %
(204, 3.0) 0.1651 | 0.1483 15.75 16.17 2.6
(20.4, 4.0) 0.2080 | 0.1933 22.40 23.30 4.0
(20.4, 6.2) -0.1539 | -0.1511 15.75 16.86 7.0
(20.4, 8.8) 0.1337 | 0.1324 19.90 20.66 3.8
(20.4, 11.3) 0.2454 | 0.2435 30.00 32.65 8.8

values, the revised estimated velocity is 18.85 kft/s and the error is reduced from 13 to
5.2 percent. Presumably, the specular rays are not right at the edges, but near enough
that this correction improves our estimate of velocity.

At location (8.8,11.3), the error is 15.5 percent. From the ray picture in Figure 5.10,
in this region the density of normal rays at surface is higher than elsewhere. From this,
I conjecture that there is a caustic nearby in the ray family of the Green’s function.
The underlying theory for estimation of the reflection coefficient (Bleistein, 1986) breaks
down in such regions and thus, the inaccuracy here is not surprising.
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FiG. 5.9. Normal rays from sawtooth reflector.

This example demonstrates that the inversion output produces reliable velocity es-
timates in more complex models, inferring, indirectly, that the computed reflectivity
and reflection angles are reliably computed as well. The significance of the inference
is important because it suggests that even if absolute value of amplitude of the data
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F1G. 5.10. Normal rays from horizontal reflector.

are not known, the results of inversion can be reliably used in bright-spot analysis and
amplitude-versus-offset (AVO) analysis.

5.3 Example 3

In this example, I test the trade-off between cost and accuracy with the use of parallel
interpolation in the complex model shown in Figure 1.1. This model consists of eight
reflectors, with a lens-shaped inclusion. The dark lines define the fixed interfaces and the
white lines are the triangle’s edges in the model generated by GBMODEL (Hale, 1991),
which generates the triangulated earth model used in the ray tracing. In some layers
the velocity is constant, and in other layers sloth changes linearly in both horizontal
and vertical directions. After building the model, I use GBSEIS (Riiger, 1993), which
generates synthetic data by the Gaussian Beam method, to generate a common-offset
data set with offset 0.3 km (Figure 5.11). Figure 5.12 is the inversion result for which
ray data were computed by ray tracing from every surface-point (spacing As=.015km,
here and below; As denotes the surface-point spacing for ray tracing) to every grid point
at depth—N, X N, X N, sets of ray data. This is the benchmark against which to compare
inversion with interpolated ray data generated by starting with a sparser set of initial
points on the upper-surface.

The program has a parameter called “skip” that characterizes the sparsity of surface-
points from which ray data are directly calculated. For example, when skip=>50, rays are
shot for every 50th surface-point. This parameter is set by the user. For the benchmark
described above, skip=1.
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Since the amplitude of synthetic data generated by the Gaussian beam method is
not reliable, I will not consider amplitude in this example. Figure 5.13 is an inversion
result with the use of parallel interpolation between surface-points. Here, I computed
ray data for a subset of surface-points and then use parallel interpolation to obtain ray
data on grid points for all surface-points. In this first test, rays were shot for every tenth
surface-point, As = .15 km or skip=10. Figure 5.12 and Figure 5.13 show comparable
results. However, the run times are quite different. The latter is five times faster than
the former.

On the other hand, when the midpoint spacing for ray tracing is too large, the
imaging is unacceptably distorted, as shown in Figure 5.14 for which As is 0.75 km
(skip=>50). Intermediate results suggest that skip=10 is about the acceptable limit of
sparsity for this example.

It is worthwhile to examine some artifacts of the output here. Note, that the image
of the first interface becomes thicker at horizontal distance around 2.5 km. This happens
because the reflector is close to the recording surface; the ray incidence angle is relatively
large compared to its value at deeper points. The underlying theory (Bleistein, etal,
1987) predicts that the range of wavenumbers in the output is proportional to cosé and
hence decreases with increasing 6. A lower range of wavenumbers leads to a broader peak
on output.

At great depths, the thickness of the image of the interface is seen to increase, as
well. Here, cos @ is nearer to one, but the background velocity is larger than at shallower
depths. The range of wavenumbers varies inversely with velocity, hence, again the range
of wavenumbers diminishes with increasing depth, but, this time, as a consequence of
increasing velocity.

Figure 5.15 shows how cpu time on a RISC6000 decreases with increasing surface-
point spacing for ray tracing. The horizontal asymptote at approximately 600 s is an
estimate of the cost of computing the integral (sum), 3(z,8), in (2.15), with the time
between the asymptote and the curve representing the portion of the cpu time that is
attributable to the calculation of ray data.

From this picture, one can see that for rays shot from every surface-point, the
ray-data cpu time is the dominant cost of the processing. For rays traced from every
10th surface-point, the ray-data cpu time is reduced dramatically to a more tolerable
percentage of the total cpu time for processing data. Although the speed of the program
depends on many issues—such as ray density, for example—parallel interpolation to
produce ray data on the entire grid from ray data starting from a sparser set of surface-
points is the main factor in the speed-up demonstrated here.

5.4 Example 4

Imaging a salt dome with overturned flanks is more challenging than were the pre-
vious two examples because we must accommodate ray trajectories near horizontal and
turning. To obtain ray data on grid points from ray data on trajectories, I use the 2-D
interpolation scheme described in the previous chapter, that does vertical as well as hor-

27

i



Midpoint(km)

L

Time(sec)

o
il

FIG. 5.11. Synthetic data generated by the Gaussian beam method (offset = 0.3 km).
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F1G. 5.12. Inversion result using ray tracing without interpolation between midpoints
(offset = 0.3 km; As = 0.015 km).
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F1G. 5.14. Inversion result with large midpoint spacing (As = 0.75 km; skip=>50).
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FiG. 5.15. CPU time versus the surface-point spacing for ray tracing.

izontal interpolation. With this technique, we can image reflections with dip beyond 90
degrees.

Figure 5.16 is a salt dome model for which Figure 5.17 is a common-offset synthetic
data generated by GBSEIS for 400-m offset. Figure 5.18 shows the output of my code. All
features in the model are imaged well, including the salt dome, the lens-shaped structure
and the reflector beneath it. In particular, from Figure 5.19, which depicts the normal
rays from the salt dome, we see that there are many rays near horizontal arising from the
region around the overturn of the salt dome. Without the vertical interpolation option
of my code, the ray data for this region would be too inaccurate to produce the image
that we see in Figure 5.18.

5.5 Example 5

Figure 5.20 is a cross section of a tank model for which experimental data were
gathered by the Allied Geophysical Laboratory at the University of Houston under sup-
port of Marathon Oil Company and provided to us. It is this model that motivated the
synthetic model in Example 2, Figure 5.5. A major difference between the two figures is
that the sawtooth reflector at about 9.5 kft deep in the figure here is sharper than in the
synthetic of Example 2.

Figure 5.21 is the largest-offset physical data, and Figure 5.22 is the corresponding
inversion result for that offset. I used five such common-offset physical data sets and
stacked the outputs of five inversions. Figures 5.23 through Figure 5.27 show the result
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F1G. 5.17. Synthetic data with offset=0.4 km.
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FiG. 5.19. Normal rays from the boundary of the salt dome.
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of a stacking the inversion of five different offsets (880, 1680, 2480, 3280, and 4080 ft)
with different choices of spatial density (skip parameter) in the ray tracing. The original
spacing of midpoints was 80 ft. At As = 1.6 kft (skip= 20) in Figure 5.25, the fault at
a depth of 7 kft and horizontal distance of 13 kft to 15 kft starts to degrade. At As= 2
kft (skip = 25) in Figure 5.26, the deepest (horizontal) reflector starts to degrade and
some of the sawteeth in the reflector above have faded. For this example, As = 1.2 kft
(skip=15) is the largest value of As for which an image is obtained that does not exhibit
degradation of any reflectors.
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F1G. 5.20. Triangulated actual Marathon model.

5.6 Example 6

In this example, I applied my program to the Marmousi (Versteeg, 1994) data.
Instead of using the correct velocity model, which consists of 160 thin layers, I used the
velocity obtained by Liu’s (1995) velocity analysis. Compared with the true velocity,
it has just 18 layers. Figure 5.28 is a triangulated Marmousi model. Figure 5.29 is
the result obtained by stacking the inversion of 19 different offset data sets. For the
Marmousi data, an important challenge is the area beneath the lens-shaped structure
(below depth 2.5 km, between horizontal distance of 3 km and 7 km). Since I used
Liu’s background model, I will compare my output with Liu’s, shown in Figure 5.30. We
have produced comparable images of the target zone. Liu’s processing is done with a
Kirchhoff migration code that uses finite difference to generate ray data. That code does
not produce estimates of the reflection coeflicient; it was designed to produce a reflector
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F1G. 5.22. Inversion result of physical tank data (offset = 4080 ft; As = 400 ft; skip=5).
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F1G. 5.23. Stacked inversion data generated from five common-offset inversions (As=
400 ft; skip=5).
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FiG. 5.24. Stacked inversion data (As = 1200 ft; skip=15).
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F1G. 5.25. Stacked inversion data (As = 1600 ft; skip=20).
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F1G. 5.26. Stacked inversion data (As = 2000 ft; skip=25).
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F1G. 5.27. Stacked inversion data (As = 2400 ft; skip=30).

map only, and was used by Liu (1995) in his recursive velocity analysis and migration
method. Thus, the only purpose of this example was to provide a test of the imaging
capability of my code on a complex model.

Two shortcomings of this method brought out by this example are: (1) I have not
organized the program to efficiently handle multi-offset data. A desirable reorganization
would involve separating out the module that generates the ray data to produce a table of
the ray data from all surface-points to all subsurface points. With the ray data computed
at the outset, the same ray data could then be used for each of the multiple-offset
inversions. (2) Using GBMOD to build model requires digitization of all the interfaces
of model, and supplying sloth in each block. If sloth model is complex, such as the
Marmousi model, this entails much work. It is desirable to have some interactive model
builder to reduce the effort required.
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F1G. 5.29. Stacked inversion result (As=0.1 km; skip=4).
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Chapter 6

CONCLUSION

I have developed a common-offset inversion code that overcomes some of the lim-
itations of the previous code CXZCO. It takes advantage of dynamic ray tracing in a
triangulated model to accomplish 2.5-D inversion. Linear interpolation is used to obtain
ray data from a ray grid to a Cartesian grid, and parallel interpolation following Liu
(1993) is used for program efficiency. I also derived a 2-D interpolation scheme to esti-
mate ray data on a Cartesian grid when the ray trajectories are nearly horizontal. With
the help of 2-D interpolation, one can image steep structures, such as salt domes. The
ultimate output of the inversion is the reflector map and an amplitude that is consistent
with the Bleistein/Cohen inversion theory. From this amplitude we obtain an estimate
of the angularly dependent reflection coefficient at the specular incidence angle and an
estimate of the cosine of that angle. An advantage of a Kirchholf inversion, such as this
one, is that we can image a selected part of model instead of the whole model, when our
purpose is to obtain an inversion result for a particular target zone. This is in contrast to
finite-difference migration or inversion, which needs to process data for the entire model.
One the other hand, this method has some disadvantages. In its present form, the code
does not lend itself to efficient processing of multi-offset data sets, since the ray data
need to be recomputed each time. This can be easily overcome. We expect that this
code will be a useful tool for seismic inversion in complex media, and can be improved
to overcome its disadvantages.
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