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ABSTRACT

I present and analyze three approaches to calculating explicit two-dimensional (2D)
depth-extrapolation filters for all propagation modes (P, SV, and SH) in transversely
isotropic media with vertical and tilted axis of symmetry. These extrapolation filters are
used to do 2D poststack depth migration, and also, just as for isotropic media, these 2D
filters are used in the McClellan transformation to do poststack 3D depth migration. Fur-
thermore, the same explicit filters can also be used to do depth-extrapolation of prestack
data. The explicit filters are derived by generalizations of three different approaches:
the modified Taylor series, least-squares, and minimax methods initially developed for
isotropic media.

The examples here show that the least-squares and minimax methods produce fil-
ters with accurate extrapolation (measured in the ability to position steep reflectors)
for a wider range of propagation angles than that obtained using the modified Taylor
series method. However, for low propagation angles, the modified Taylor series method
has smaller amplitude and phase errors than those produced by the least-squares and
minimax methods. These results suggest that to get accurate amplitude estimation,
modified Taylor series filters would be somewhat preferred in areas with low dips. In
areas with larger dips, the least-squares and minimax methods would give a distinctly
better delineation of the subsurface structures.

In all the implemented methods, the accuracy of the extrapolators depends on the
elastic properties of the medium. Considering transversely isotropic media characterized
by Thomsen’s parameters (Vy,Vio,€,6, and 7), for the P mode, the accuracy of the
operators increases with increasing values of 6, and decreases for increasing values of €.
In elliptically isotropic media (e = 8), the accuracy of the extrapolators for the P mode
is relatively insensitive to the degree of anisotropy. For the SV mode, the operators are
basically determined by the parameter o = (V,0/Vi0)2(e — §), however, the accuracy in
this propagation mode does not change much for typical values of ¢ found in sedimentary
basins. Also, because there is no phase-velocity dependence on the phase angle 8 from
the axis of symmetry for elliptical media in the SV mode, filters for that mode have
accuracy identical to that for isotropic media. Explicit filters for the SH mode can be
obtained using the same computer programs used in the P mode, by making V, = Vo,
and € = § = . Therefore, the accuracy for the SH mode is identical to that obtained for
the P mode for elliptical anisotropy.

Thus, the depth-extrapolation process as applied to depth migration in transversely
isotropic media is determined mainly by certain Thomsen’s parameters (e and §) for the P
propagation mode, o for the SV propagation mode, and v for the SH mode. These result
imply that for the P mode, we need only calculate tables of depth-extrapolation filters
for a range of normalized frequencies (fAz/V,g) and for each pair of € and & values. It
is sufficient to calculate these tables for only a representative constant value of the ratio
Vso/ Vo, €8, Vao/Veo = 0.5. For the SV and SH mode, tables of depth-extrapolation
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filters for only a range of normalized frequencies (fAz/Vy) and for each constant value
of o and v, respectively, would be needed.

By first studying isotropic media, I show that the problem of inaccuracy at large
dip is produced mainly by a singularity in the derivative of the imaginary-part of the
downward-extrapolation operator. That singularity causes a relative slow convergence of
the Fourier series in the imaginary-part filter. The same behavior arises in the downward-
extrapolation operator for the P mode in transversely isotropic media, but this time the
parameters € and § determine the derivative behavior, and therefore, the accuracy of
the extrapolators. This theoretical analysis is confirmed by analyzing the accuracy of
depth-extrapolation filters calculated using a least-squares method.

For the SV mode, I used the minimax method to calculate depth-extrapolation
filters for some constant values of o and found that, despite the wide variation in shapes
of impulse responses with ¢, the accuracy of the calculated extrapolators is similar for
a wide range of ¢, with maximum propagation angles of about 70 degrees in all cases.
The least-squares method also has accuracy similar to that of the minimax method,
but, unlike the minimax method it cannot handle triplications in the SV mode impulse
response so well as the minimax method can. In contrast, due to the lack of accuracy for
high propagation angles, modified Taylor series filters for the SV mode cannot reproduce
these triplications at all.

On a field data set, I used modified Taylor series filters to obtain several depth
migrated sections with different constants of anisotropy. The data set consisted mainly
of low-dip reflectors and a main fault dipping at about 50 degrees. Using an anisotropic
dip moveout (DMO) algorithm, estimates of the anisotropic parameter 7 = (e—6)/(1+26)
and a zero-offset section with variable velocity and variable parameter 7 were obtained by
interpolating multiple constant-7, zero-offset panels. The vertical P-wave velocity field
Vo used in depth migration was obtained from the relation V,o = Vyao(0)/v1 + 25,
where Vya0(0) is the measured normal moveout velocity for horizontal reflectors.

To study the influence of using the anisotropic DMO and depth-migration algo-
rithms, I calculated four different depth-migrated sections. The first section was calcu-
lated using isotropic filters over an isotropic DMO-plus-stack section. The second and
third sections were calculated for a constant value of 7 over an anisotropic DMO-plus-
stack section, but for different combinations of € and §. The last section was calculated
using isotropic filters over the anisotropic DMO-plus-stack section. The results of the
different depth-migrated sections show that because of the low estimated values of 7,
and for the range of dips (0-45 degrees) present in the area, to get a good imaging of
the main fault it is sufficient to use the anisotropic DMO algorithm plus isotropic depth
migration. The influence of anisotropy in the DMO process and correct location in depth -
of the reflectors in depth migration is appreciable. For these data, however, the influence
of anisotropy is negligible in the lateral displacement produced by the depth-migration
process itself.

"The depth-migration program used on the field data set was implemented with some
level of parallelism using the message-passing system PVM (Parallel Virtual Machine).
In particular, prototype versions of 2D and 3D depth migration (using McClellan trans-
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formations) were implemented using PVM. Preliminary results show that, through the
parallelism, the total elapsed-time of the migration process can be reduced by a factor
of 12 in a network of 25 IBM RS/6000 models 520 and 530 workstation. For the field
data set, for example, 2D poststack depth-migrated sections consisting of 500 CMPs,
750 samples in time, and 600 steps of depth-extrapolation, were obtained in an average

elapsed time of 9 minutes, as opposed to 110 minutes running in only one IBM RS/6000
model 530 workstation.
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Chapter 1

INTRODUCTION

Seismic exploration problems in complex areas are now being addressed using ad-
vanced seismic data processing techniques, for example, three-dimensional (3D) poststack
and prestack depth migration. Traditionally, it has been considered that vertical and lat-
eral velocity variations are the main problem in complex areas, but now explorationists
are beginning to consider an additional problem, the presence of anisotropy in the subsur-
face layers. An ideal migration algorithm appropriate in complex areas must consider all
these factors; it must handle vertical and lateral velocity variations, it must also handle
3D data, and it must allow the incorporation of anisotropy information that might be
obtained from velocity analysis or well logging.

The assumption of elastic isotropy has been useful in seismic exploration for hydro-
carbons; however, many sedimentary rocks are found from experiment to be anisotropic.
Theoretical studies (Postma, 1953; Levin, 1979), velocity determinations in the labora-
tory (Thomsen, 1986), and field studies (Banik, 1984; White et al., 1983; Crampin et al.,
1984; Ball, 1993) have shown that many sedimentary rocks are anisotropic. In particu-
lar, transversely isotropic (TI) media have been observed in several studies (Jones and
Wang, 1981; Ball, 1993), and it is expected that media formed through rapid cyclical
sedimentation patterns will be transversely isotropic or exhibit more complex anisotropy
(Backus, 1962).

Clearly, since seismic imaging requires use of accurate migration velocity, anisotropy
can play an important role in the positioning of geological boundaries on migrated im-
ages. Larner and Cohen (1993) and Alkhalifah and Larner (1994), have found that large
position errors arise for steep reflectors when transverse isotropy is ignored in poststack
migration. Also, isotropic migration algorithms applied to physical modeling data in TI
media (Martin et al., 1992) produced mis-location of plane reflectors and a complete loss
of steep structures.

Recognizing the importance of taking anisotropy into account, several authors have
recently developed migration algorithms for anisotropic media. Uren et al. (1990) eval-
uated the performance of a two-dimensional (2D), frequency-wavenumber (w — k) depth
migration algorithm in TI media. Sena and Tokséz (1993) developed a 2D Kirchhoff
prestack depth migration algorithm using a Green’s tensor representation for weakly TI
media, and Alkhalifah (1995a) used a Gaussian beam algorithm for poststack migration
in general 2D anisotropic media. Kitchenside (1993) developed both implicit and ex-
plicit schemes for frequency-space (w — z) downward continuation in 2D TI media. The
explicit scheme involves the spatial inverse Fourier transform of the discrete downward-
continuation operator for TI media in the w — k domain; the resulting operator is then
truncated and tapered to reduce the Gibbs phenomenon. However, as pointed out by
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Nautiyal et al. (1993), either long operators or a strong tapering, with consequent loss
of accuracy in the propagation region, are needed to get stable filters in this method.

Depth migration can be done using various algorithms; not a single migration al-
gorithm can always be used with accuracy and computational cost advantages in all
practical situations. Migration algorithms available today present different limitations
in the handling of 3D and prestack seismic data, lateral velocity variations, dip angles,
anisotropy, etc. Thus, implicit finite-difference migration (Claerbout, 1985) can handle
lateral velocity variations but its extension to 3D seismic data is unpractical (Claerbout,
1985; Hale, 1991a). Migration via explicit methods for recursive depth extrapolation
can handle arbitrary velocity variations (Holberg, 1988; Hale, 1992a) and can be easily
extended to 3D seismic data by using McClellan transformations (Hale, 1991b); however,
explicit methods have limited accuracy for steep reflectors. Gazdag’s (1978) phase-shift
method, has no dip-limitation problems, but this method is unable to handle lateral
velocity variations efficiently (Hale, 1992a).

Other migration algorithms can address all the problems mentioned above, but their
computational cost can be high. Reverse-time migration, for example, can be applied to
all the situations that can be modeled (3D and prestack data, lateral velocity variations,
any dip angle, anisotropy, etc.). Unfortunately, even in modern computers, the high
computer cost and heavy demands on computer memory and input/output devices (Hale,
1992a) of reverse time migration can be prohibitive. Kirchhoff migration (Schneider,
1978) has been used recently in many practical situations because of its flexibility to adapt
to almost any migration problem: 2D prestack and poststack (Ratcliff et al., 1992), and
even 3D prestack depth migration (Cabrera et al., 1992). Hale (1992b) pointed out that
the most difficult part in Kirchhoff migration algorithms is the accurate and efficient
computation of traveltimes and amplitudes. Multi-valued traveltimes and amplitude
functions (i.e., where more than one seismic wave can arrive at one surface location
from the same subsurface point), and infinite amplitudes for ray caustics, tend to make
Kirchhoff migration less robust in the presence of lateral velocity variations than are
migration methods based on finite differences and explicit depth extrapolation (Hale,
1992b). ’

Gaussian beam migration (Costa et al., 1989; Hill, 1990) has recently arisen as
a useful migration algorithm, with desirable features such as computational efficiency,
robustness with respect to ray caustics, and straightforward extensions to prestack mi-
gration. Hale (1992b) analyzed the computer cost of Gaussian beam depth migration
compared with the cost of depth migration via explicit depth extrapolation. He found
that for typical stacked sections of 800 CMPs, 800 samples in time, and 800 steps of
depth extrapolation, Gaussian beam migration is about 20 percent slower than explicit
depth migration. Alkhalifah (1993a) obtained a Gaussian beam migration algorithm for
poststack migration in general, 2D anisotropic media and found that this anisotropic
algorithm was just 10 percent slower than its isotropic counterpart. On the other hand,
the cost of explicit depth migration for anisotropic media is the same as the cost for
isotropic media (Kitchenside, 1993); the convolution process is the same, and we have
only to change the convolutional operators. Therefore, the computer cost of Alkhalifah’s
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(1995a) anisotropic Gaussian beam migration is about 30 percent higher than depth
migration via explicit depth extrapolation.

Artley (1994) extended Gaussian beam migration to handle 3D data but his im-
plementation was ipefficient. I do not know of any reference that shows a practical
implementation of Gaussian beam migration in 3D data. In addition, Gaussian beam
migration may not lend itself to implemention on parallel or vector computers. These
two possibilities (3D extension and parallel or vector implementations) are fully exploited
in migration via explicit depth extrapolation (Hale, 1991b; Holberg, 1988). However, we
must remember again, that current implementations of migration via explicit depth ex-
trapolation have dip limitations and cannot handle turning waves; for complex structure
with large dip, Kirchhoff and Gaussian beam migration would likely be preferred over
migration via explicit depth extrapolation.

Thus, migration via explicit depth extrapolation (EDE) is attractive to apply in
complex areas with lateral velocity variation and with reflectors that are not too steep
because it has some efficiency and flexibility advantages over other migration processes.
EDE is basically a convolutional process wherein each output is calculated independently,
so the process can be easily implemented in parallel and vector computers. Moreover,
EDE can also handle lateral and vertical velocity variations. As pointed out by Holberg
(1988), just by changing the convolutional operators, heterogeneous media can be con-
sidered without increasing the computational cost and without loss of accuracy. Hale
(1991b) also accomplished 3D depth migration by using McClellan transformations and
the same 2D explicit operators that he used for 2D depth migration. Prestack migration
can also be accomplished with EDE through combined use of explicit filters and ray trac-
ing programs. EDE can be used to do downward continuation of receivers in common-
midpoint and common-shot gathers (Kitchenside, 1992), and ray tracing programs or
eikonal solvers can calculate efficiently the imaging condition for prestack migration.

Implementation of EDE in anisotropic media is the main subject of this thesis.
Basically, I investigate the possibility of extending to TI media three approaches that
have been used before to obtain EDE operators for isotropic media; the modified Taylor
series (MTS) of Hale (1991a), the least-squares (LS) method of Holberg (1988), and the
minimax method of Soubaras (1992). For TI media, EDE operators can be obtained by
following the same steps as in the isotropic case, but with special considerations for the
anisotropic nature of the phase velocity.

The MTS method used by Hale (1991a) for isotropic media can be adapted for
transversely isotropic media with vertical axis of symmetry (VTI), but now taking into
account that the horizontal wavenumber and the phase velocity are functions of the
propagation angle. The basic idea is to find a filter in frequency-midpoint (w — )
space such that its spatial Fourier transform matches (in the propagation region) that
of the downward-continuation operator for VTI media. To ensure attenuation of the
evanescent energy, some degrees of freedom in the filter are used to force amplitude
values to be less than unity in the evanescent region. It turns out that the MTS method
produces filters that are always stable, so they can be applied for several thousand steps
of downward continuation. Also, amplitude and phase errors of MTS filters are small for
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low propagation angles (i.e., less than 30 degrees). However, these filters lose accuracy
quickly with increasing phase-propagation angle.

In an alternative approach, Holberg (1988) obtained explicit depth-extrapolation
filters for isotropic media by minimizing the squared error of amplitude and phase of the
filter in a given range of propagation angles with the vertical (0 < |9] < Omaz)- For VTI
media I follow the same approach, but now take into account the theoretical expression
for the downward-continuation operator for VTI media. Much as was done by Holberg,
to get stability for angles greater than 6,,,, and in the evanescent region, I introduce a
penalty function that grows for amplitude values of the filter greater than unity. I then
use a conjugate-gradient algorithm to minimize the resulting function.

From the kinematic point of view, I find that the LS method generates filters with
a wider range of accurate propagation angles than that of the MTS method, but the
filters need to be designed carefully to avoid instability. Stable and accurate filters in
the LS method are obtained using an iterative formulation wherein the LS problem is
solved using several initial models for the filter coefficients until a sufficiently accurate
and stable filter is found. This formulation increases the computational cost of the LS
method. In relation to the MTS method, I also find that the amplitude and phase errors
for LS filters and for low propagation angles are greater than the errors for MTS filters.
However, the errors produced by LS filters remain relatively constant for propagation
angles less than the maximum design angle 8,,.,, and these errors do not grow so quickly
with increasing propagation angle as do the MTS errors.

Another approach to obtaining the explicit filters makes use of 2 minimax method.
The minimax method has been applied before in the design of zero-phase bandpass
filters (McClellan, et al. 1973) and in isotropic depth-migration applications (Soubaras,
1992). McClellan’s 1973 computer code, originally designed to obtain bandpass filters,
can be easily modified to allow the calculation of depth-extrapolation filters for TI media.
‘The modification requires only (1) the match of the filter response with the theoretical
downward-continuation operator for T1I media, and (2) an inverse interpolation routine to
find the phase-propagation angle for a given ratio of horizontal wavenumber to frequency
(k/f). In the approach, the filters are calculated in such way that the maximum error in
the propagation region between the ideal and the actua] response of the filter is minimized.
To obtain stability in the evanescent region, the amplitude response must be less than
unity in that region. In the minimax method, I minimize the maximum error between
the filter response and a decaying exponential function of wavenumber with amplitude
values less than unity. Oppenheim and Schafer (1989) show that for the optimal solution
to this type of problem, the resultant error function has maximum and minimum values
of equal size, and the design problem becomes a problem in Chebyshev approximation
over disjoint sets, solved using the Remez exchange algorithm (McClellan, et al. 1973).
I find that the computational cost of the minimax method in obtaining the filters is far
less than that of the LS method, although the accuracy of the resultant operators is
comparable for the two methods.

In all these implemented methods, I find that the accuracy of the operators, mea-
sured in the ability to position dipping reflectors correctly, depends not only on which
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propagation mode is considered (P or SV), but also on the elastic properties of the
medium. Here, I use Thomsen’s (1986) parameters to characterize the TI media. In
terms of the familiar elastic coeficients ¢;; and density p, Thomsen’s parameters are

Voo = y/ca3/p
Voo = Y cas/p

5 (c13 + caq)® — (ca3 — caq)?
2¢33(c33 — Cas)
€11 — €33
2033
Ce6 — C44
2644

€

v ) (1.1)
where the subscript 3 refers to the symmetry-axis direction, and 1 to a normal to that
direction. Thus, Vpg and Vg are the P-wave velocity and S-wave velocity in the direction
of the symmetry axis, respectively. The P- and SV-wave modes are described by the first
four Thomsen parameters, while the SH-wave mode is described just by Vo and 1.

I first examine which of the four Thomsen’s parameters are needed to calculate
explicit operators for the P and SV modes. Several tests on synthetic seismograms show
that for the P propagation mode, we need only calculate explicit operators for each pair
of € and § values. By comparing theoretical migration impulse responses for the SV
mode, I show that, to a good approximation, we need only compute explicit operators
for each ¢ value in the SV mode, where ¢ = (Vpo/Vs0)%(€ — &) is a parameter introduced
by Tsvankin and Thomsen (1994). For the SH mode, we only need compute operators
for each v value.

To study the accuracy problem in isotropic media, I calculate explicit filters for the
real and imaginary parts of the downward extrapolation operator (DEQ) (Uzcategui,
1994a), without amplitude constraints in the evanescent region. The idea is to use all the
degrees of freedom in the filter to obtain accuracy. One result is that the imaginary-part
filter produces most of the amplitude and phase error in the total filter. This behavior
can be explained by using the convergence properties of Fourier series for the imaginary-
part DEOQ. In TI media, I follow the same approach used in isotropic media, and study
the properties of the imaginary-part DEO to explain the dependence of the accuracy of
the filters on the values of € and 6.

To address the 3D problem, I calculate 3D migration impulse responses in TI media
with a vertical axis of symmetry using McClellan transformations. McClellan transfor-
mations is an efficient method to implement two-dimensional filters that have a particular
form of symmetry, such as the circularly symmetric depth-extrapolation filters used in
isotropic 3D depth migration (Hale, 1991b). In TI media with a vertical axis of symmetry,
the symmetry of the 3D depth migration filter is not lost. The spatial wavenumbers in
the inline and crossline directions (k, and ky, respectively) are symmetrically distributed
about zero dip, i.e., k.(8) = k.(—6), and the same relation holds for k,. For TI media
with a tilted axis of symmetry, this symmetry is lost, so a direct application of McClellan
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transformations is unfortunately not possible. The 3D impulse responses calculated with
the McClellan transformations, agree with 3D theoretical impulse responses calculated
using the group-velocity (Thomsen, 1986) and ray-angle equations for TI media.

By using modified Taylor series filters, I also obtain several depth-migration sections
on a field data set from offshore Africa, for different values of Thomsen’s parameters. The
area consisted mainly of low-dipping reflectors and a main fault dipping about 45 de-
grees. Using an anisotropic dip-moveout (DMO) algorithm (Anderson and Tsvankin,
1994), T obtained estimates of the anisotropic parameter 7 = (¢ — §) /(1 + 26) and gener-
ated a zero-offset section with variable velocity and variable parameter n by interpolating
multiple constant-n zero-offset panels. Alkhalifah and ‘Tsvankin (1994) showed that for
seismic data processing in time, only the normal moveout velocity for horizontal reflec-
tors Vymo(0) and 7 are needed to produce an accurate imaging. For depth migration,
however, the correct positioning of the events in depth depends on V0, which is not
readily estimated from surface seismic data.

Many different combinations of ¢ and § can produce the same 7 value obtained
from the anisotropic DMO analysis. For simplicity, and in order to study the influence
of anisotropy on the DMO and depth-migration process, I calculate just four different
depth-migrated sections. The first section was calculated using isotropic filters over an
isotropic DMO-plus-stack section. The second and third sections were calculated for a
constant value of 7 equal to the average value obtained in the DMO analysis (7=0.1) over
an anisotropic DMO-plus-stack section, but for e=0.1 and 6=0.0, and €=0.0, §=-0.083,
respectively. The last section was calculated using isotropic filters over the anisotropic
DMO-plus-stack section. The results show that because of the low estimated values of
7, and for the range of dips (0-50 degrees) present in the area, to get a good imaging of
the main fault it is sufficient to use the anisotropic DMO algorithm plus isotropic depth
migration. The influence of anisotropy in the DMO process and correct location in depth
of the reflectors in depth migration is appreciable, but the influence of anisotropy on
lateral positions by depth migration is negligible.

MTS filters were chosen because reflector dips in the data set do not exceed about
45 degrees, and the values of the anisotropic constants obtained in the DMO processing
are low (i.e., the average value of 7 is about 0.1). Therefore, these MTS filters can be
used with confidence; they should produce better amplitude estimates than will the LS
and minimax filters. Interval velocities derived from N MO velocity analysis were used to
obtain the vertical velocity (Vio) field for different choices of 6. Thomsen (1986) showed
that vertical velocities in TT media differ from NMO velocities for horizontal reflectors
(ie., Voo = Vwamo /V1+28). Thus, for every different value of §, the computed vertical
velocity field Vo changes, producing a relative displacement of the reflectors in depth
with respect to the depths obtained in the isotropic depth migrated section. Because the
7 value was honored in both anisotropic depth migration calculations, the lateral position
of the imaged reflectors was the same for migration with two different pair of ¢ and §
values.

The migration results on the real data agree with theoretical results obtained by
Alkhalifah and Larner (1994) that show small lateral position errors for dip less than 50
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degrees when transverse isotropy is ignored in poststack migration. On the other hand, on
the field data set, the influence of anisotropy in the prestack processing (DMO) is crucial
to get a good mapping of the fault plane. These results suggest that in many practical
situations (i.e., relative low dips), anisotropy would influence mainly the prestack related
seismic data processing; therefore, anisotropy corrections in the prestack phase would be
fundamental to obtain a good imaging of dipping events, and a primary recommendation
is that the methodology developed in this thesis be extended to prestack migration.

As an example of the possibility of implementing the EDE process in parallel and
vector computers, prototype versions of 2D and 3D poststack depth migration were im-
plemented using the message-passing system PVM (Parallel Virtual Machine). For post-
stack 3D depth migration, the computer time to calculate an impulse response on a data
cube of 101x101 CMP locations in the inline and crossline directions, 101 samples in
time, and for 101 steps of depth extrapolation, was reduced from about 165 minutes on
a single IBM RS/6000 model 530 workstation to 25 minutes on a network of 25 similar
machines (IBM/RS6000 models 530 and 520). For the field data set, 2D poststack depth-
migrated sections consisting of 500 CMP locations, 750 samples in time, and 600 steps
of depth-extrapolation, were obtained in average elapsed time of 9 minutes, as opposed
to 110 minutes obtained running the same depth migration on only one of these IBM
workstation. The total elapsed-time of the migration process was reduced by a factor
of 12 for the 2D poststack process, but, for the 3D process, the reduction factor was
only about 7. Although these results are preliminary and further analysis is needed to
improve the 2D and 3D depth-migration implementations in PVM, the communication
requirements in the 3D problem apparently increase the total cost.
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Chapter 2

POSTSTACK MIGRATION IN TI MEDIA

2.1 Introduction

As in poststack migration for isotropic media, we assume that the exploding reflector
model (Loewenthal, et. al., 1976) is also a convenient model for anisotropic media.
The waves generated satisfy the scalar wave equation, but with a dispersion relation
determined by the anisotropy with direction-dependent velocities. From the elastic wave
equation for TI media, we obtain phase velocities and downward extrapolation operators
(DEO) for the different propagation modes. These DEQ are then used in one-way scalar
migration equations, appropriate to motions for each of the propagation modes.

Much as is done in isotropic media, we assume that our zero-offset section has been
processed to enhance only a single propagation mode (P, SV, or SH). Appropriate ve-
locity analysis and moveout correction in anisotropic media (i.e, Alkalifah and Tsvankin,
1994) for each propagation mode must be applied in order that the stacking process en-
hance only the wanted propagation mode and attenuate the others. Converted waves,
propagation modes not attenuated by the stacking process, multiple reflections, etc., will
be considered as noise in the poststack section.

2.2 DEO in isotropic media

In a laterally invariant isotropic medium, 2D downward-extrapolation from depth 2
to depth z + Az can be done by using Gazdag’s (1978) formula

P(w,k,z + Az) = P(w,k,2)D(w, k), (2.1

where w denotes angular frequency, k is the horizonta) wavenumber, P(w, k, z) is a plane-
wave component of the seismic wavefield evaluated at depth z, and D(w, k) is the 2D
DEO in the frequency-wavenumber (w — k) domain, given by

Az | (wAz)? :
[0 vd et 3 . z — ‘-——— — ‘2 . -
Dlw, k] = exp {ik.Az} = exp = K v ) k{} (2.2)

Here, k. is the vertical wavenumber, Az and Az are the vertical and horizontal sampling
intervals, V,; is the phase velocity, and k = &, (6)/ Az is the horizontal wavenumber. In
depth extrapolation of CMP stacked data, we use the ” exploding reflectors” concept and
replace velocity Vp, with half-velocity V,4/2 (Claerbout, 1985). For a general inhomo-
geneous medium with lateral velocity variation, downward-extrapolation can be carried
out in the (w — z) domain as a convolution in z. Taking the inverse spatial Fourier
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Cijkl Crs
gorkl | TorJ
11 1
22 2
33 3
23 or 32 4
13 or 31 5
12 or 21 6

Table 2.1. Voigt recipe to change notation between the elastic tensor c;;u and the
modulus matrix Cry

transform in equation (2.1) results in a change of the product in the (w — k) domain into
a convolution in the (w — z) domain.

Plw,z,2 + Az) = / B(w,z1,2) D(w, z — z1)dat, (2.3)

where the tilde represents the inverse spatial Fourier transform, and the integral is eval-
uated over all space. D(w,z) is also known as the spatial wavelet (Nautiyal et al., 1993).
The spatial wavelet in equation (2.3) decays slowly for increasing magnitude of z; there-
fore, direct evaluation of this equation would be expensive. In practice, we approximate
the spatial wavelet using a filter with a finite number of coefficients (see Chapter 3).

2.3 DEO in TI media

In order to obtain expressions for k. in TI media, we start with the equations of
motion. Wave propagation in TI media has been discussed broadly before (Thomsen,
1986; Kitchenside, 1991). Here, we follow an elementary approach to the derivation of
the DEO in a TI medium. In the derivation of the DEO, we will assume a homogeneous
TI medium. However, the actual extrapolation is performed in the (w—2z) domain, which
allows lateral velocity variations [see equation (2.3)]. Therefore, we apply the DEO in a
space-variant manner, i.e., each output point of the extrapolated data is computed using
an operator based on one local value of the wavenumber k(z,z,w) = w/c(z,z,w), the
ratio of the currently treated frequency w and the local propagation velocity.

The equations of motion in an elastic media, neglecting body forces, are (Aki and
Richards, 1980)

6 Guk
U = —(Cisp— ,1,k,1=1,2,3 24
p 7 337,( 17kl 62’1) s R 9 3 ( )
where u; is the j-th component of the displacement vector, u; is the j-th component of
the acceleration, p is the density, and ¢;;. is the elastic modulus tensor. We seek plane
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harmonic solutions of the form

u; = a;expiw(t — pezx)]  7=1,2,3, (2.5)

where a; are the components of the polarization (ie., particle-displacement) vector, and
P; are the components of the slowness vector. In homogeneous media, substitution of the
displacements given by equation (2.5) in the equations of motion produces

Cis
[—éﬂpfpz -_ 5_7'1:} ar = 0. (2.6)

Making use of the Christoffel matrix Tir = &%ﬂp,-pz, we can write equation (2.6) simply
as

[Tie — &5 ax = 0. (2.7)
The elastic tensor ¢ has the symmetry property

Cijkl = Crlij = Clkjis

therefore, I';; is symmetric and its eigenvalues are all real. Using these symmetry proper-
ties, the elastic tensor Cij can be transformed with a change of indices into a symmetrical
6x6 matrix Crz, so that the 81 elastic coefficients in Ci;r are reduced to 21 independent
coeflicients in the most general case of anisotropy. Following the Voigt recipe, the trans-
formation from tensor to matrix notation can be made using Table 2.1. For a VTI
medium, the elastic modulus matrix has five independent components, and is given by

[ Ci1 (Ci1 —2Ce) Cig ]
Cn Cis
Cs3

CIJ = 044 ’

where only the non-zero components above the diagonal are shown; the matrix is sym-
metrical.

Assuming that @ is not identically zero in equation (2.7), the only nontrivial solutions
to this equation are obtained from solving

det {ij - A(sjk] = (. (28)

Then, each of the three solutions to equation (2.6) is obtained by setting each of the
three roots A; (i = 1,2,3) of I'jx equal to unity. One eigenvalue corresponds to a quasi-
compressional P wave, and the other two correspond to a quasi-shear wave, SV, and a
pure shear wave SH (Daley and Hron, 1977). Using the elastic modulus matrix for a VTI
medium in equation (2.8), and considering only propagation in the (z — z) plane, we can
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take the y-component of the slowness vector ps as zero, and equation (2.8) will be given
only in terms of the horizontal and vertical slownesses (p;, p3) in the (z — z) plane

piCi1 + p3Caa — X 0 P1P3(Ci3 + Caa)
det| 0 p2Ce6 + P2Caa — A 0 =0. (2.9)
P1p3(C13 + Cus) 0 P3Cas + P3C33 — A
Solution of (2.9) yields
)\1 = %{M'i" V1M2 _L2}
Y = 5{M ~ VI~ IF)
As = p%C% -+ p§C44, (210)

where

M= (Cn =+ C'44)p% + (033 t C44)]7§
L= (Cup? + C44P§)(C44P§ + 0331’?3) —(Ciz + C44)Z’%P§-

A1 = 1 corresponds to a quasi-compressional P wave, Ao = 1 corresponds to a quasi-shear
SV wave, and A3 = 1 corresponds to a shear SH wave. The phase velocities Vp, Vsy, and
Vs, can be obtained from each of equations (2.10) by using

sind _ cosé
Va®) 7T Valo)

D=

where V,5(8) is the phase velocity for the corresponding propagation mode, and & is the
angle between the propagation direction and the symmetry-axis direction. Instead of
using the five elastic moduli Cr; to describe wave propagation in TI media, Thomsen
(1986) suggested a different notation involving only two elastic moduli (vertical P- and S
wave velocities) plus three dimensionless measures of anisotropy [e, 6, and +; see equation
(1.1)]. Asshown by Tsvankin (1994), Thomsen notation simplifies the description of wave
propagation in Tl media. In terms of Thomsen’s parameters, the phase-velocity equations
can be written as

VE(6) = V3 [1 + esin®(9) + D" (6)] (2.11)
V2,(6) = V3 {1 + %-29 (esin*(9) — D*(O))} (2.12)
80
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Viu(6) = Vi [1 + 2ysin(0)] , (2.13)

where D*(6) is given by

D*(6) = -;—(1 - %) { [1 + i;—(-QLS-:—(E;—sinz(&) cos?(8)+

V2
(-8
{ 2 2 172
41-V2/V,
i ’O/V,”O+€)6sin4(6) 1%, (2.14)
(- %)

For an arbitrary orientation of the axis of symmetry with respect to the z—axis, it
can be shown (Kitchenside, 1991) that the solutions for Von(8) are given by

VE(6) = Vo [1 + esin®(6 — ¢) + D*(6 ~ ¢)] (2.15)

V3, . . .
Vo) = V3|14 32 (esin0 - 9) - 00~ 9)], 210
where ¢ is the angle between the axis of symmetry and the z—axis. Now, having the

equations for the phase velocity, the DEO for each propagation mode can be simply
written, just as in equation (2.2), as

2 3
Dlw,k,] = exp {i-ﬁ—; K%) - kﬁ} } i (2.17)

2.4 Phase and group velocity in TI media

As we have seen, the velocity of a plane wave in an anisotropic medium, changes
with direction. This angular velocity dispersion results in the energy of an arbitrary
seismic ray generally deviating from the normal to the surface of constant phase, so
that, in general, the ray path is not normal to the surface of constant phase. In Figure
2.1, Huygens’ principle in anisotropic media is applied to propagate seismic waves from
a single dipping exploding reflector. If the traveltime from source S to receiver R is ¢
seconds, then the group or ray velocity A(velocity at which energy travels radially outward
from the point source) Vj is given by SR/t in that direction. In contrast, the velocity of
a single plane-wave along the direction k (locally perpendicular to the wavefront) is the
phase velocity, and is given by TR/t.

For plane waves, the phase velocity is also given from the dispersion relation V() =

w/k. If a wave vector k (along the plane y = 0) is given by & = k(sin 6, +cos 6%3) where
Z; is the unit vector in the ith—direction, then, we can write the associated phase-velocity
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Ground surface R

Wave vector

Exploding
Reflector

Fi1G. 2.1. Huygens’ principle applied in anisotropic media to propagate waves from an
exploding reflector.

vector as
Vou(6) = -‘;—:—(sin 6%) + cos 83). (2.18)
The group velocity is given by (Berryman, 1979) V,(¢) = %‘;%, or in vector notation
~ Ow ow
Vi(0) = oty + ot
o(®) akfl + 8k3x3
= V,(sin ¢z + cos ¢x3),

where the group angle ¢ is an implicit function of the phase angle é given by (Berryman,
1979)

_ &u / 8k1
e = 3 ok,
_ 1 dV;,h tané dV;,,,
= (tan9+ b ) /(l Vo do ) . (2.19)
Berryman (1979) also obtained the relation between the group and phase velocity
AV \®
vil(elo] = Valo? + (52 (2.20)

As mentioned above, the group velocity is the velocity at which the energy travels in the
13




Impulse response

vy Z

F1G. 2.2. Depth-migration impulse response in anisotropic media. z¢ and zo represent
the spatial coordinates of any point on the migration impulse response.

subsurface; therefore, the group velocity is used directly in many geophysical applica-
tions, such as, for example, calculations of traveltime in ray-tracing programs, moveout
corrections in anisotropic media, etc. However, other geophysical process (i.e., w — &
migration) work with individual plane-waves, so these process require the explicit use of
the phase velocity.

2.5 Migration impulse response in TI media

After obtaining the equations for phase and group velocity, and for the group angle,
one can readily evaluate theoretical migration impulse responses in TI media. These
theoretical impulse responses will be used to evaluate the performance of different explicit
migration algorithms.

The depth-migration impulse response is defined as the locus of points in the subsur-
face that have the same two-way zero-offset traveltime to a single receiver. From Figure
2.2 we see that the points 7y and z; on the depth-migration impulse response curve are

given by
zo(¢) = Rp — V(,éé) tosin¢
20(¢) = V;é'é) to cos @ (2.21)
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F1G. 2.3. Depth-migration impulse responses for the P, SV, and SH propagation modes
in a homogeneous VTI medium (weathered gypsum).

where £y and Ry are the time and z position of the impulse in the zero-offset section. In
order to obtain the time-migration impulse response, we need only change the axis z to

the axis of migrated time 7 = 225/V,(¢), so the time migration impulse response will be
given by

zo(4) = Ro — %gb) tosin @
T(¢) = tocos . (2.22)

Figure 2.3 shows depth-migration impulse responses for the P, SV, and SH propa-
gation modes in a homogeneous VTI medium, weathered gypsum (Thomsen, 1986). The
impulse in the zero-offset section is located at a two-way time of 1.0 s, and Thomsen
parameters for this medium are Vo = 1.9 km/s, Vo = 0.8 km/s, € = 1.16, § = -0.14,
and 7 = 2.78. Despite the fact that the medium is homogeneous, the SV response shows
triplications due to the presence of extreme (maximum or minimum) values in the curve
of group versus phase angle (Kitchenside, 1993). Recall that the phase angle is the slope
of a tangent to the wavefront (impulse response in Figure 2.3) and the ray angle is de-
fined by the direction from the origin (R, in Figure 2.2) to the wavefront. When we
move along the SV impulse response from the point at which the phase angle is zero,
the phase angle increases monotonically, whereas the ray angle increases, decreases, and
then increases again. Also, as expected from equation (2.13), the impulse response in
Figure 2.3 is elliptical for the SH mode. For comparison, for an isotropic medium, all the
impulse responses would be circular.

Figure 2.4 shows time-migration impulse responses for the same medium as in Figure
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0 1 2 3
Midpoint (km

F1G. 2.4. Time-migration impulse responses for the same medium as in Figure 2.3

2.3. For vertical propagation (¢ = 0), the three impulse responses have the same migrated
time value (that is, time migration does not alter the time of horizontal reflections).
The migrated-time axis 7 in Figure 2.4 is a stretched version of the depth axis z in
Figure 2.3, with a variable stretching factor given by the inverse of the group velocity
1/V4(¢). From Figure 2.3, we see that for the P and SH modes, Vo(9) is greater for
horizontal than for vertical propagation (wavefronts travel larger distances along the
horizontal than along the vertical direction). In the (z — 7) domain (Figure 2.4), vertical
propagation corresponds to higher values of 7; therefore, the stretching factor 1/ V(@)
increases with migrated time 7, producing angle-dependent distortions with respect to
the wavefronts in Figure 2.3. If the homogeneous medium in Figure 2.4 were isotropic,
the time-migration impulse responses would be ellipses, just stretched versions of the
circular depth-migration impulse responses, with stretch factors equal to the inverse of
the isotropic velocity.

2.6 Phase-shift (Gazdag) migration in TI media

In Chapter 3 we will evaluate the performance of explicit depth-extrapolation filters
by calculating migration impulse responses via explicit filtering in homogeneous media.
Using equations (2.21) for the group velocity and ray angle, we can evaluate the exact
kinematics of the impulse responses in TI media to compare with the kinematics obtained
via explicit filtering; however, we do not have an analytic tool to evaluate the amplitude
distribution along these impulse responses. In homogeneous media, downward extrap-
olation can be done exactly using the Gazdag’s (1978) phase-shift operator; therefore,
migration impulse responses in TI media obtained using Gazdag’s method provide results
against which we can compare the amplitude response of migration via explicit filtering.
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In addition, it is also important to analyze how the amplitudes obtained by the Gazdag
and explicit depth-extrapolation methods are related to the anisotropy in the medium.
Knowing this relation, we can correct amplitudes obtained using these two methods for
possible distortions due to anisotropy.

Phase-shift migration (Gazdag, 1978) in TI media can be done following a similar
approach to that used in isotropic media, wherein downward extrapolation of the wave-
field is obtained by multiplying the Fourier transform of the recorded seismic wavefield
P(w,k,,z = 0) with exp{ik.Az}, the DEO in isotropic media, where %, is again the ver-
tical wavenumber. As is done in isotropic media, if only vertical variations in velocity and
in the anisotropic constants are allowed, downward extrapolation of the seismic wavefield
in TI media is obtained by multiplying P(w, k;, 2z = 0) with exp{ik.Az}, where k. is now
governed by the particular propagation mode in TI media. Due to the angular velocity
dispersion in TI media, the phase propagation angle for each plane-wave component in
the phase-shift method needs to be calculated from the relation k/w = sin8/V,,(6). Fol-
lowing the notation of Claerbout (1985) for isotropic media, a Gazdag depth-migration
scheme in TI media can be readily defined as

Plw,k;) = FT (p(t, ) ;
for(z = Az,2Az,.. ., 2mez){
for all k,{
Image(k,,z) = 0;
for all w{
locate(k/w,8, z);
¢ V2(6,2)k2
C =exp (_iAszhZ;,z) \/1 - ph(wv2 ) x) ;
P(w,k;) = P(w,k;) * C;
Image(k,,z) = Image(k.,z) + P{w, k.);

}

}

image(z, z) = FT (Image(k,, z))

2

where FT denotes Fourier transform, p(t,z) is the recorded wavefield at the surface,
image(z, z) is the final depth-migrated section, and locate is an inverse interpolation
function that calculates the phase propagation angle 6 from a pre-computed table of
ratios k/w = sin8/V,,(8).

Figure 2.5 shows three depth-migration impulse responses for the P propagation
mode in weathered gypsum, based on the Gazdag method. In the test, spatial sampling
intervals Az = Az = 10 m, and the time sampling interval At = 10 ms. The trajectory
of the theoretical impulse response for the middle impulse is shown in the figure as a
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thin dotted line. Due to the high value of € for this material (e=1.16), the migration
impulse response is broader than the familiar migration impulse response for isotropic
media. On the middle impulse response (dotted line), for example, the distance from the
origin (midpoint=1.5 km; z=0 km) to the impulse response for horizontal propagation is
about 1.0 km, whereas, the distance for vertical propagation is only 0.5 km. Note also
that the Gazdag method has no dip limitations; however, amplitudes values decrease

with increasing propagation angle. We discuss this angle-dependent amplitude behavior
next.

2.7 Angular amplitude distribution in the Gazdag method

Kinematically, migration impulse responses in homogeneous media are equivalent
to wavefronts radiating from a point source, and these impulse responses correspond to
plots of V4(¢) in polar coordinates [equation (2.21)]. If the medium were isotropic, the
phase shift applied in the Gazdag method (w—k domain) would automatically introduce
the obliquity-factor amplitude term (cos®) in the final migrated section (z — z domain,
Claerbout, 1985). This obliquity-factor amplitude term corresponds to the radiation pat-
tern for P-waves produced by a point vertical force in a homogeneous isotropic medium.
In TI media, the amplitude distribution is governed not only by the obliquity factor, but
also by the anisotropic constants in the medium (Tsvankin, 1994).

Radiation patterns in anisotropic media have been derived before using different
approaches. Tsvankin and Chesnokov (1990) presented an analytical solution derived in
the stationary-phase approximation. Ben Menahem et al. (1991) and Gajewski (1993)
obtained expressions for radiation patterns in anisotropic media using asymptotic ray-
theory. All these solutions require numerical evaluation and do not provide easy analytic
insight into the problem. Tsvankin (1994) presented a concise weak-anisotropy approxi-
mation for radiation patterns in TI media relating distortions of point-source radiation to
Thomsen parameters. He found that the weak-anisotropy approximation is accurate (for
small and moderate values of ¢, §, and 7) and provides a convenient tool for qualitative
amplitude estimates for a wide range of transversely isotropic models. Here, we compare
amplitudes on migration impulse responses obtained using Gazdag’s method with the
amplitudes obtained using Tsvankin’s (1994) weak-anisotropy formula.

Figure 2.6 shows a depth-migration impulse response for the P mode in an isotropic
medium using the Gazdag method. The same spatial and time sampling intervals used
in Figure 2.5 will be used in all the following examples. As predicted, amplitude values
decrease with increasing group angle. Figure 2.7 shows the maximum amplitude of the
P-wave in each trace as a function of group angle for the impulse response of Figure 2.6.
The solid curve was obtained by automatic picking of the maximum amplitude value of
each trace in the depth migration impulse response of Figure 2.6 and normalizing by the
vertical-incidence amplitude. The dotted curve in Figure 2.7 is the standard obliquity
factor in isotropic media (cos®). Note that the Gazdag migration amplitudes follow
almost exactly the standard decay given by the obliquity factor, up to the maximum group
angle shown, 75 degrees. For high propagation angles (close to 90 degrees), the amplitudes

18



Midpoint (km)

F1G. 2.5. Depth-migration impulse responses via the Gazdag method for the P
propagation mode in the weathered gypsum.

in the Gazdag impulse response are weak because cosy¥ — 0, and these amplitudes can
be comparable to the numerical noise generated by the discrete implementation of the
algorithm (Claerbout, 1985).

For TI media, Tsvankin (1994) obtained the P mode far-field radiation pattern for
a point force and for weak transverse isotropy (€ < 1,6 < 1, and v < 1) as

F, [1—2(e~6)sin®20 + §sin® 4]
4pVHR 1426 ’

where Up is the absolute value of the P displacement, 6 is the phase angle, R = /22 + r2
(z is the receiver depth, r is the horizontal source-receiver offset), p is the density, and
the source term F, is the projection of the force on the displacement (polarization)
vector. Tsvankin (1994) also pointed out that the polarization of the P-wave excited
by a point force in a homogeneous anisotropic medium is usually close to the isotropic
direction; therefore, the source directivity factor F, has almost the same influence on the
P-wave radiation pattern as it has in isotropic media. For isotropic media (¢ = § = 0)
and for constant R, equation (2.23) reduces to the standard obliquity factor (e.g., cos ¢)
contained in the term F,. To explain the behavior of the term F,, Tsvankin (1994) also
found expressions for the polarization angle as a function of the anisotropic constants in
the weak-anisotropy approximation

.P(Rv 9) =

(2.23)

tan ¢ = tané {1 +B [26 + 4(€ — 6) sin? 0]} , (2.24)
1
2(1-V3/VR)

B._
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F1G. 2.6. Depth-migration impulse response via the Gazdag method for the P
propagation mode in isotropic media.
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F1c. 2.7. Amplitude as a function of group angle for the migrated section of Figure 2.6.
Solid line: maximum wavelet amplitude value in each trace. Dotted line: obliquity factor
(cos ) for isotropic media.
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where ¢ is the polarization angle measured from the symmetry axis.

Figure 2.8 shows a depth-migration impulse response for the P mode in a TT medium
with Thomsen parameters given by Vo = 2.0 km/s, Vyo = 1.0 km/s, ¢ = 0.0, and § =
0.3. The amplitude distribution for this medium differs considerably from that of Figures
2.5 and 2.6. In Figure 2.8, the amplitudes initially increase with propagation angle up
to a maximum value, and then decrease to zero for horizontal propagation. Figure 2.9
shows this behavior quantitatively. The solid curve again shows values obtained from the
maximum amplitudes picked on the traces in Figure 2.8; the dashed line represents the
standard obliquity factor (cos) for isotropic media; and the dotted line represents the
amplitudes predicted by equation (2.23), with F, corresponding to the directivity factor
for a point vertical force [cos ¢, and ¢ given by equation (2.24)]. Within the numerical
error, the amplitudes obtained by the Gazdag method in Figure 2.9 follow the anisotropic
amplitudes predicted by equation (2.23); and both amplitudes differ substantially from
the standard obliquity factor in isotropic media. To further compare Gazdag amplitudes
with those of equation (2.23), we calculate a depth-migration impulse response for a
medium which is the same as in Figure 2.8 except that now § = -0.3 (Figure 2.10). As
pointed out by Tsvankin (1994), for low propagation angles (close to vertical propagation)
equation (2.23) predicts focusing of the energy for 6 < 0, and defocusing for é > 0.
Figure 2.11 shows again that the anisotropic Gazdag amplitudes follow pretty well the
theoretical amplitudes based on the weak-anisotropy assumption; these amplitudes decay
much faster than the standard obliquity factor.

For elliptical anisotropy (¢ = §), Tsvankin (1994) showed that the stationary-phase
solution reduces to a simple function of the group angle ¥ without application of the
weak-anisotropy approximation

F, 1
4rpVHR \/(1 +26)(1 + 26 cos? ) '

In addition, Tsvankin(1994) also finds an expression for the polarization angle without
using the weak-anisotropy approximation

Up(R,¥) =

(2.25)

tan ¢ = tanbv'1 + 2B6. (2.26)

For the SH-mode, Tsvankin (1994) obtained a similar expression to that for the P ellip-
tical mode

F 1
4mpVHR \/ (1+29)(1 + 2ycos? &)

where F» is now the force component perpendicular to the incidence plane. The SH-wave
radiation pattern is basically identical to the P-wave pattern for elliptical media (replace
Vi and v by Vi and § respectively); however, for the SH-wave radiation pattern the
source term F, is constant because the polarization direction does not change with the
incidence angle.

The DEO for TI media in Gazdag’s migration thus does not distinguish between ellip-
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F1G. 2.8. Depth-migration impulse response for the P mode in a VTI medium with
Thomsen’s parameters Vo= 2.0 km/s, Vo= 1.0 km/s, € = 0.0, and 6= 0.3.

Amplitude

Group Angle (degrees)

F1G. 2.9. Relative amplitude obtained from the depth-migrated section of Figure 2.8
(solid line). The standard obliquity factor (cos ¥) for isotropic media is shown as the
dashed line, the dotted line shows the amplitudes predicted by equation (2.23).
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F16G. 2.10. Depth-migration impulse response for a VTI medium with the same Thomsen’s
parameters as in Figure 2.8, but with §= -0.3. Note the different shape and, in particular,

amplitude distribution in relation to Figure 2.8.
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F1G. 2.11. Amplitude for the depth-migrated section of Figure 2.10 (solid line). The
dotted line shows again the amplitudes predicted by equation (2.23).
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tical P-waves and SH-waves. Recall that this operator is a function of the phase-velocity
whose expression is the same [equations (2.11) and (2.13)] for elliptical P-wave and SH-
wave modes; therefore, we expect that Gazdag’s amplitudes obtained for SH-waves will
be identical to those obtained for elliptical P-waves. Figure 2.12 shows impulse responses
using the Gazdag method for the SH mode, for a VTI medium with Vo= 2.0 km/s, and
7= 0.3. Figure 2.13 shows the theoretical amplitudes from equation (2.27) (dotted line)
but instead of using Fo= constant, we use Fy = F, where F, = cos ¢ corresponds to the
directivity factor for elliptical P-waves, and with ¢ given by equation (2.26). Figure 2.13
shows that the theoretical amplitudes agree with the Gazdag-migration amplitudes from
Figure 2.12.

An interesting result (shown in Appendix A) valid for elliptical P- and SH-waves
is that the square-root term in equations (2.25) and (2.27) cancels exactly, along the
wavefront, the 1/R term in those equations. That means that the only factor that
controls the elliptical P-wave and SH-wave amplitudes along the wavefront is the force
term F), and F3, respectively.

Figure 2.14 shows depth-migration impulse responses for the SH mode in the weath-
ered gypsum. Note that because the large value of 7 for this material (y= 2.78), the
horizontal semi-axis of the elliptical impulse response is almost three times larger than
the vertical semi-axis. Even for this large value of 7, we see in Figure 2.14 an amplitude
distribution similar to that in isotropic media, with amplitudes decaying with propa-
gation angle. The results of Appendix A, and the Gazdag amplitudes of Figure 2.14,
suggest that the amplitude distribution for the elliptical P and SH propagation mode
will be weakly dependent of the anisotropy in the media.

For the SV mode, Tsvankin (1994) obtained in the weak-anisotropy approximation

F, 1+20sin?28+ osin%g
dwpV2R 1+20 ’

where o = (V0/V40)%(€ — §). In isotropic media, migration impulse responses produced
by the Gazdag method are identical for the Pand SV propagation modes (the DEO is the
same for both modes). The only way that these two impulse responses can be the same
and can also be produced by point forces is that they correspond to point forces directed
in directions that make a 90 degree angle. Thus, if we try to relate migration impulse
responses in isotropic media for the P and SV modes to radiation patterns produced by
point forces, we must require that impulse responses for the P and SV modes correspond
to radiation patterns produced by a vertical and horizontal point forces, respectively.

In TI media and for the SV mode, the term F, is usually more disturbed by the
anisotropy than is that for the P mode. Tsvankin (1994) also pointed out that because
the P and SV polarization vectors corresponding to the same phase angle are orthogonal,
we can use the P-wave formula and just add 90 degrees to calculate the SV polarization
direction. Figure 2.15 shows the angular amplitude distribution for the SV mode, and
for a o value of 0.15. For this relative low value of o, Gazdag amplitudes follow closely
the amplitudes given by equation (2.28).

We have seen here that the weak-anisotropy approximation formulas of Tsvankin

Usv(R,8) = (2.28)
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F1G. 2.12. Depth-migration impulse responses via the Gazdag method for the SH prop-
agation mode, for a VTI medium with Thomsen parameters Vo= 2.0 km/s, and y=
0.3.
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F1G. 2.13. Amplitude as a function of propagation angle for the depth-migrated section

of Figure 2.12 (solid line). The dotted line shows the amplitudes predicted by equation
(2.24).
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F1G. 2.14. Depth-migration impulse responses via the Gazdag method for the SH
propagation mode in the weathered gypsum.

(1994) predicted well the observed amplitudes of migration impulse responses obtained
by the Gazdag method applied to VTI media. In Chapter 3 we will compare amplitudes
in impulse responses obtained by migration with explicit downward-extrapolation filters
against those obtained by the Gazdag approach.
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F1G. 2.15. Amplitude as a function of propagation angle for the SV mode and for a
o value of 0.15. Solid line: Gazdag amplitudes. Dotted line: amplitudes predicted by
equation (2.28).
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Chapter 3

EXPLICIT FILTERS IN TI MEDIA

3.1 Introduction

As discussed in Chapter 1, explicit filters (Holberg, 1988: Hale, 1991a) have proved to
be a useful tool in the extrapolation of seismic wavefields for depth migration in isotropic
media. Here, I extend their approaches to TI media. Explicit depth-extrapolation filters
may be designed using any of several methods. Hale (1991a) used a modified Taylor series
(MTS) expansion to obtain filters for isotropic media. Holberg (1988) obtained similar
filters using a least-squares (LS) approach. Recently, Nautiyal et al. (1993) applied
windowing methods (truncation of the ideal frequency response using a finite-duration,
tapered window) in the design of isotropic depth-extrapolation filters. Soubaras (1992)
used a minimax method to obtain isotropic depth-extrapolation filters for 2D and 3D
depth migration.

Each of these methods gives filters with characteristics that limit their application
in depth-extrapolation in specific ways. For example, the MTS method produces filters
that are always stable, so they can be applied for several thousand steps of downward-
continuation with no concern about amplitudes blowing up. However, these filters lose
accuracy quickly with increasing phase-propagation angle. The LS method generates
filters with a wider range of accurate propagation angles than that of the MTS method,
but the filters need to be designed carefully to avoid instability. Here, I obtain stable
and accurate filters in the LS method for TI media by using an iterative formulation
wherein the LS problem is solved using several initial models for the filter coeficients
until a sufficiently accurate and stable filter is found. As we will see later, this formula-
tion increases the computational cost of the LS method. Designing depth-extrapolation
filters by windowing is straightforward, but it also has a number of limitations. For
example, the window method does not allow individual control over the errors in the
propagation and evanescent regions (Oppenheim and Schafer, 1989). A prime goal in
depth-extrapolation of seismic reflexion energy is to obtain small amplitude and phase
errors in the propagation region (§ < 90 degrees). The error in the evanescent region
may be large. We need only ensure that filter amplitudes are less than unity to attenuate
possible random noise components that can be recorded in this region.

An alternative approach to obtaining the explicit filters is to use a minimax method.
In this approach, the filters are calculated in such way that the maximum error in the
propagation region between the ideal and the actual response of the filter is minimized.
The minimax method has been applied before in the design of zero-phase bandpass filters
(McClellan, et al. 1973) and in isotropic depth-migration applications (Soubaras, 1992).
As Soubaras (1992) showed for isotropic media, I will show here that the computational
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cost of the minimax method in obtaining the filters for TI media. is far less than that of

the LS method, although the accuracy of the resultant operators is similar for the two
methods.

3.2 Filter design problem

The theoretical DEO for TI media was obtained from the equations of motion for
elastic plane waves propagating in the vertical (z, z) plane (see Chapter 2). Here, we want
to design a finite-length filter that matches the theoretical DEO in the propagation region;
in the evanescent region, the filter must attenuate the energy to avoid the amplification
of random noise components that are always recorded in this region. For a particular

frequency w in the propagation region, the spatial Fourier transform of the filter W (k,,w)
must satisfy

2 3
W(kz,wzD{kx<e>,w1=exp{i‘—§-;- [(-51%) —kzw)] } (3.1)

where D [k, (6),w] is again the exact DEO for the medium. k.(6) is related to the phase
velocity by

k.(6) wsin(9)

Az = V) (3.2)
The filter W(k,,w) can be written as (Hale, 1991a)
(N-1)/2
Wikz,w) = Y. (2= 8o)h(w)cos(k,l), (3.3)
=0

where &y is the Kronecker delta function, h;(w) are complex coefficients of the filter, and
N is the number of coefficients. Because W (k,,w) is symmetric in k,, only (N + 1)/2
different coefficients h;(w) are needed to determine the response of an N-length filter.

In all the methods implemented in this thesis to calculate explicit depth-extrapolation
filters for TI media, the number of filter coefficients will be equal to 39 (N = 39). Hale
(1991a) showed that for isotropic media explicit filters designed by the MTS method,
with NV = 19 coefficients, can propagate maximum dips of only 35 degrees with relatively
good accuracy. He also found that only 15 degrees of propagation angle can be gained
by doubling the number of filter coefficients from N = 19 to N = 39. In TI media, the
number of degrees of propagation angle that can be gained by increasing the number
of filter coefficients vary according with the anisotropy in the medium. The gain may
be only a few degrees, about 5 degrees when N changes from 19 to 39 for a strongly
anisotropic media [i.e., weathered gypsum, Uzcategui (1993)]. Thus, explicit filters with
a low value of N (i.e., N = 19) can only accurately propagate low dips. On the other
hand, longer filters (i.e., N > 39) will increase the cost of explicit depth-extrapolation,
reducing the efficiency, one of the main advantages of this method. In addition, N = 39
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was also chosen in order to compare the results obtained herein for TI media with the
results obtained by Holberg (1988) and Hale (1991a) for isotropic media.

Calculating depth-extrapolation filters is basically equivalent to finding a convergent
series expansion for the DEO in the propagation region. Different treatments can be used

to attenuate the evanescent energy, and to improve the convergence of the Fourier series
expansion.

3.2.1 Modified Taylor series (MTS) method

In the MTS method (Hale, 1991a), the filter coefficients k;(w) are obtained by match-
ing the filter’s Taylor expansion around 6 = 0 with that of the DEO in the propagation
region. In particular, because the filter is symmetric and we want this filter to be exact
for vertical propagation, we would like to match the first (N +1)/2 even derivatives at
6 = 0. However, to obtain attenuation in the evanescent region, we must try to match
fewer than (N + 1)/2 derivatives and let the remaining degrees of freedom in the fil-
ter be used to ensure that the amplitude of the filter is less than unity in that region

(IW(ks,w)] < 1). Following Hale (1991a), I represent the filter coefficients as a sum of
M weighted basis functions:

M-1
hi(w) = Y cm(w)bm, (3.4)

m=0

where the basis function b,,; is given by

rml
bt = (2 = 61mg) cos(QZ,”' ). (3.5)

The problem is now to determine the M complex weights ¢, (w). Again, to achieve

stability, the number M of weights must be less than the number (N 4+ 1)/2 of filter

coeflicients, so only the first M derivatives of the Fourier transform of the filter are

matched with those of the DEO for TI media. The remaining (N 4 1)/2 — M degrees of

freedom are used to ensure stability by forcing the Fourier transform of the extrapolation

filters to zero at several wavenumbers in the evanescent region (see Hale, 1991a)
The Fourier transform of the extrapolation filter will be now

M~-1
W(kz,w) = Z Cm(w)Bm{kz(o)] = D[kx(g)’w} (3'6)

m=0

where B,,[k.(8)] is given by

w-1/2 2rml
Bolkz(0)] = (2= 6mo) D (2~ &) cos( v ) cos[k.(8)1]. (3.7
=0 -

The main difference between this Fourier transform of the basis function B,,[k,(6)] and
that given by Hale (1991a) for isotropic media is that in this case (TI media) the hor-
izontal wavenumber &, also depends on § through V,4(8) [see equation (3.2)]. In equa-
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tion (3.6), M terms in the Taylor series expansion around 8 = 0 for the filter W{(k.,w)
are matched with those terms corresponding to the Taylor series expansion of the DEO

D(k.(0,w). Whereas Hale’s Taylor series expansions were in powers of k., the expansions
here are in powers of ¢

= 2 4 (0)g4 2M () 2M
Wlka(6),0)] 2 3 cnle ){B (0) + Bo g))o +Bmi(!))8 ".B,n(é:;); }

D2(0)62  D4(0)8*  D2M(0)s2M
o1 41 T My

D[k,(8), 0] = D(0) +

where D®)(0) and BZ"(0) are the 21t derivatives of the downward-continuation operator
and basis functions, respectively, evaluated at § = 0. The derivatives D®)(0) were
obtained with the help of a computer program that performs symbolic differentiation.
Even for low values of I, expressions for these derivatives are unmanageable, but they
can be expressed as functions of Az/Az, wAz [V, for the P-wave mode, and wAz [V,
for the SV-wave mode, and a table of numerical coefficients. Thus, for example, D?(0)
is given by

D2(0) = exp (z’AzwA:v) {1 + Az (——1 6 N e) wA:z:}
AIL‘VPO Az Vpo 1-— VO/V2 Vpo ’
For reasons given in Chapter 4, I calculate depth-extrapolation filters for each pair of ¢
and & values, and for different ratios of wAz/Vyg or wAz [V, for the P and SV modes,
respectively. Vo can be set as a constant for the P-wave, and V,q set as a constant for
the SV-wave.

Matching of the Taylor expansions of the filter and downward-continuation operator
above gives a linear system of equations for the coefficients ¢, {w)

M1
3 en(w)BE(0) = D®(0) 1=0,1,..M, (3.8)
m=0
{(N-1)/2 2
BO(0) = (2—bmp) 3. cos(“omr) cos[nk, (6)]®(0), (3.9)
n=0

where cos[nk.(6)]®)(0) is the 2/* derivative of cos[rk. ()] evaluated at § = 0. For
isotropic media cos[nk.(8)]®)(0) = (—=1)*-' T\, ai[nw/V,n(0)]¥, where the a; are con-
stant coefficients. For TI media, the cosine derivatives can still be expressed as powers
of nw/V,,(0), but the coefficients a; are now functions of the phase-velocity derivatives
evaluated at 8 = 0.

The D?#(0) derivatives in equation (3.8) are complex quantities. Recall that the
downward-continuation operator is a complex function in the propagation region. There-
fore, to solve equation (3.8) we must solve two systems of equations, one for the real-part
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of D*(0) and another for the imaginary-part. The system of equations [3.8] and [3.9] is
solved for ¢,,(w), and equation (3.4) is used to calculate the final filter coefficients A, (w).

In practice, equations (3.8) and (3.9) are solved for different values of M and different
stable filters are found. Following Hale (1991a), we consider a stable filter to be one
having an amplitude value less than 1.001 for all wavenumbers. From all the stable
filters found, we choose the filter with the largest angle in the propagation region for
which the phase error is less than 7/1000. As described later, this phase-error criterion
guarantees the application of the filter for at least 1000 steps of depth-extrapolation with
an accumulated phase error of no more than one-half cycle ( radians) for dips up to that
largest angle. I followed the above procedure for all of the M'TS filters calculated in this
thesis, so in this sense, the M value obtained for each calculated filter can be considered
as an optimum value.

3.2.2 Least-squares method

For the least-squares method, the match of the Fourier transform of the filter with
the downward-extrapolation operator is done over a range of discrete equal increments
in phase angle (§ = 0,...,0p,,) that correspond to a range of discrete wavenumbers
(kz =0,...,kmnaz). Bmas represents the maximum dip that can be extrapolated by a stable
finite-length filter with a given maximum amplitude and phase errors in the propagation
region. In isotropic media, the value of §,,,, depends only on the filter-length and on
the maximum amplitude and phase errors wanted for the propagation region (Holberg,
1988). For TI media, I show that 8,,,, also depends on the anisotropic constants in the
medium. Unfortunately, I do not know of any analytical method to calculate Bmar for
a given set of values for filter length, anisotropic constants, and maximum amplitude
and phase errors in the propagation region. Here, I obtain 8,,,, values by an empirical
method.

Instead of matching the Taylor series expansions for the filter and downward-extra-
polation operator at 6 = 0, as it was done in the MTS method, the matching criterion
in the LS method involves the use of the exact DEQ and not its Taylor series expan-
sion around vertical propagation (# = 0). In TI media, as we will see later, the DEO
dependence on propagation angle is influenced by the anisotropy in the medium. There-
fore, in the presence of anisotropy, the Taylor expansion around §=0 may not be a good
representation of the DEQ, especially for high propagation angles.

Following Holberg (1988), we do the matching by minimizing the sum of the square
errors in the amplitude and phase response of the filter,

ke=kmaz

Jw)= > (AE?+ PE?), (3.10)
ky=0

subject to the constraints

WSt (Omez)

[W(ks,w)| < 1.0 for lkz| > kmer = Vo)

(3.11)
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F1G. 3.1. Tolerance scheme in amplitude response for an ideal depth-extrapolation filter.
6, and §, are the maximum allowed deviations in the propagation and evanescent regions,
respectively.

Here, AE is the amplitude error of the filter, AE = 1.0— |W (k,,w)|, and PE is the phase
error of the filter, PE = k. Az — tan‘lfﬁz”f‘((?v%f%, and again, the Fourier transform of
the N-length filter W (k,,w) is given by equation (3.3).

Constraint (3.11) is incorporated into the least-squares problem (3.10) by adding to
the objective function J(w) a penalty function that is equal to the square of the amplitude

error when the amplitude of the filter exceeds unity, so our final objective function is

kz=kmaz kz:knvq
Jw)= Y, (AE*+PE®+ Y pilk.), (3.12)
k=0 kr=kmazx

where k, . is the spatial Nyquist frequency. Although the amplitude and phase errors
of the filter are given in different units (AE is non-dimensional and PE is in radians),
the sizes of the two errors are similar, so no normalization was used in the minimization
process. Typical amplitude and phase errors obtained are about 1/1000 and /1000,
respectively. The penalty function ps(k.) is given by

[ ABY i [W(k,w)| > 10,
ps(kz) “‘{ 0, if [W(kow)| < 1.0, (3.13)

I then use a conjugate gradient algorithm for the minimization of the non-linear least-
squares problem.
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3.2.3 Minimax method

Figure 3.1 shows tolerance levels used in approximating amplitudes of a depth-
extrapolation operator by a finite-length filter using the minimax method. The match
with the amplitude response of the operator is made in two regions, or bands, of wavenum-
bers. In the first band, or propagation region, unit amplitude s to be approximated with a
maximum absolute error of & for horizontal wavenumbers
0 < k < kmge- Here, kpmor = 2wSin b e, /Vor(Bmaz) is again the maximum wavenumber
in the propagation region, corresponding to a maximum design angle 0,02, and Vo, (6) is
the phase-velocity of the medium. To achieve stability in the second band, or evanescent
region, either a constant value less than unity (as shown in Figure 3.1) or a decaying
exponential function is to be approximated in the region k, < k < knyq, with maximum
absolute error of 82, where k, corresponds to the stopband edge.

Oppenheim and Schafer (1989) pointed out that in the design of bandpass filters, the
discontinuity between the bandpass and stopband region (jump from unity to zero am-
plitude) reduces the accuracy of the designed filters. For that reason, I use for wavenum-
bers greater than k.. and for the evanescent region, a decaying exponential function
(described later) with an initial value equal to unity at k¥ = k..., and with amplitude
values less than unity in the region kpmer < k < kny,. Because the amplitude value of
the DEO throughout the propagation region is unity, this exponential function guaran-
tees continuity for the amplitude values of the filter, and also stability in the evanescent
region. Nevertheless, Soubaras (1992) calculated explicit depth-extrapolation filters for
isotropic media using a constant amplitude value of 0.7 in the evanescent region and for a
maximum design angle of 8,,,,=65 degrees. The results obtained here (see section 3.5.2)
for isotropic media show similar accuracy to those obtained by Soubaras (1992). I did
not make a detailed study of which approach for the evanescent region (constant value
less than unity or decaying exponential function) works better. However, if we are to
use a constant value for the evanescent region, we must be sure of two things: First, to
increase the accuracy of the filter (Oppenheim and Schafer, 1989), the constant value
must be close to unity to reduce the size of the discontinuity between the propagation
and the evanescent region. Second, the filter amplitude error in the evanescent region o
plus the constant value must be less than unity to ensure attenuation.

In the region between k... and k,, the amplitude response of the filter is uncon-
strained, and no approximation error is defined. Parks and McClellan (1972) showed that
with a fixed length of filter, and fixed values of kpqs, ks, by letting the ratio 65/6; vary
the design problem becomes a problem in Chebyshev approximation, a problem that was
solved by Cheney (1966) (see Appendix B).

The initial filter design problem to solve by the minimax method is similar to the
problem solved in the LS and MTS methods. We need to find a filter in frequency-
midpoint (w - z) space such that its spatial Fourier transform matches (in the propagation
region) that of the DEO for TI media. In order to reproduce the DEQ, two real filters
are needed (one for the real part and another for the imaginary part of the operator). In
the MTS and LS methods, these two real filters are calculated simultaneously. The real-
and imaginary-part of the complex filter coefficients h;(w) in the MTS and LS methods
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correspond to real- and imaginary-part filters, respectively. McClellan’s computer code,
however, was initially designed to calculate real zero-phase bandpass filters and therefore
does not allow the calculation of complex filters based on amplitude- and phase-error
criteria, as is needed in the MTS and LS methods. Therefore, in the implementation
of McClellan’s code to calculate depth-extrapolation filters, I calculate separately the
real- and imaginary-part filters for the DEO. The criterion used to calculate each one
of these filters is basically an amplitude-error criterion (described below). If the am-
plitude error of each one of these calculated filters is small, the total amplitude error
1.0— \/Re(W(k,, w))? + Im(W(k,,w))?, and phase error k.Az —tan~! %‘((%))% of the
composite filter (real plus imaginary) will also be small.

Thus, the matching criterion in the minimax method is to equate the spatial Fourier
transform of each one of these filters (real- and imaginary-part) to that of the DEO for
a particular frequency w. The matching is given by

minimize {max E(k) |Re[D(k,w) — W(k,w)]| },
minimize {maz E(k) |[Im[D(k,w) — W(k,w)]| }, (3.14)

where Re and Im are the real and imaginary part operators. The minimization is made
for all the wavenumbers in the two bands [0, kmez] and [k, kny,), and E(k) represents a
weighting function that incorporates different approximation errors for the propagation
and evanescent regions.

In general, in migration we are interested in doing downward continuation of the
reflected seismic energy with high accuracy, and in attenuating the evanescent energy
Just enough to avoid the amplification of noise. Thus, we give more weight to the errors

in the propagation region than to those in the evanescent region. A typical definition for
E(k) can be

L 0<k < kmaa,
E“)‘{ 1 k,<k<k

where L = 6,/6; is a constant greater than one. This quantity is the ratio of the maximum
allowed error in the evanescent region to the maximum allowed error in the propagation
region.

In practice, a finite-length filter cannot achieve arbitrary small values for the errors
61 and &;. However, Parks and McClellan (1972) generated an algorithm that guarantees
that for a given length of the filter and for prescribed bands (0,kmas) and (K, kny), the
maximum weighted error of the filter [equation(3.14)] would be minimum. The Parks and
McClellan (1972) algorithm is iterative (see details in Appendix B), and the iterations
will stop when a filter with maximum amplitude error equal or less than §; and &, [for
the bands (0,kmez) and (ks, Kkny,), respectively] is found.
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3.3 Amplitude and phase errors in explicit depth-extrapolation

In the design of explicit depth-extrapolation filters, we try to reproduce the am-
plitude and phase response of the DEQ; however, as we will see in this chapter, the
approximation of the DEO by a finite-length filter introduces amplitude and phase errors
that will distort the final depth-migrated section. In order to study the influence of the
amplitude and phase errors introduced by the explicit filters, it is useful to consider the
process of explicit downward continuation in the w — k, domain. In this domain, the
equation for explicit downward continuation is given by

P(w, ks, A2) = W(w, k) P(w, ks, 0). (3.15)

The filter W(w, k.) will introduce an amplitude error 64 and phase error §PE in every
step of depth-extrapolation. With this notation, and recognizing that the current depth-
extrapolation operator is D(w,k;) = exp {tk.Az} with k, = wcos8/Vyn(8), equation
(3.15) can be written as

P(w, ks, A2) = (1 + 8A) exp {ilk.Az — 6PE]} P(w, ks, 0). (3.16)

After N steps of depth-extrapolation, the downward continuated wavefield will be given
by

P(w,kz,2) = (1 + 6A)Y exp {i[k.2 — N6PE]} P(w, k., 0), (3.17)

where z = NAz. Equation (3.17) tell us that one single plane-wave component of the
seismic wavefield P(w, k., z), will be extrapolated with an amplitude error of (1+64)¥
and with a phase error of —NSPE. To obtain the final migrated section in the (z — z)
domain, we must perform a two-dimensional inverse Fourier transform and apply the
imaging condition ¢=0 (Claerbout, 1985) to obtain

p(z,2) = / / exp {i[k, 2]} P(w, ks, 2)dwd,. (3.18)

In general, the amplitude and phase errors, §4 and 6PE, vary with frequency, and
also, for a fixed frequency w, §A and §PE vary with the dip of the reflector, given by
k= wsin®/Vyu(6). To a rough approximation, if we take §4 and §PE as average errors
over all the dipping angles and independent of frequency, equations (3.17) and (3.18) will
give us

B(z,2) = (1+ 6A) exp {—i[NSPE]} [ [ [ exo (it} Pl kz,z)dwdkz]
= (1 + 6A)" exp {—i[NSPE]}p(z, z), (3.19)

where f(z, 2) is the migrated section obtained by using the explicit depth-extrapolation
filters, and p(z, z) represents the exact migrated section. The final amplitude and phase
errors in the migrated section obtained by explicit depth-extrapolation filters can thus be
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Medium Vo Vo € 6
km/s | km/s
Berea sandstone | 4.206 | 2.664 | 0.002 | 0.020
Taylor sandstone | 3.368 | 1.829 | 0.110 | -0.035
Mesaverde clayshale | 3.794 | 2.074 | 0.189 | 0.204
weathered gypsum | 1.911 | 0.795 | 1.161 | -0.140

Table 3.1. Vertical phase velocities (P-wave V, and S-wave Vo) and Thomsen
anisotropy parameters (¢ and §) for four TI media studied by Thomsen (1986).

roughly approximated by (1 + §A4)Y and —N§PE, respectively. This analysis has been
simplistic in that I have assumed frequency-independent errors; however, as we will see
in Section 3.5, the amplitude and phase errors of the filters implemented vary little with
frequency. Thus, the most important errors to analyze in explicit depth extrapolation
will be the filter amplitude and phase errors with reflector dip. I analyze these errors
next.

3.4 Filter accuracy for a single frequency

3.4.1 MTS method

The accuracy of filters calculated using the MTS method would depend mainly on
how well the Taylor series expansion of the DEO around =0 fits the DEO itself. In any
mathematical problem where we try to approximate a function by using its Taylor series
expansion, the error in the approximation (Abramowitz and Stegun, 1970) is controlled
by the value of the (n + 1)th derivative of the function, where » is the number of terms
used in the Taylor expansion. In TI media, the DEO and its derivatives with respect to §
are functions of the anisotropic constants. When the DEOQ is approximated by its Taylor
series expansion and for a constant number of terms n, the error in the approximation
will change accordingly with the values of the anisotropic constants. For TI media with
values of |¢],|6] << 1, the Taylor expansion of the DEO is an accurate representation
of the DEO itself, and only a few terms in the expansion are needed (Uzcategui, 1993).
For strongly anisotropic media, one could expect that more terms, perhaps considerable
more, would be needed to get an accurate representation of the DEO.

Figure 3.2 shows amplitude spectra of filters in the propagation region (0° < 6 < 90°)
obtained using the Taylor series method, for several VTI media and for both propagation
modes (P and SV). The vertical phase velocities and anisotropy parameters (Thomsen,
1986) for these media are given in Table 3.1. The amplitude scale displays only the
region close to unity, to emphasize the stability in the propagation region. The number
of terms in the expansion was N = 39, Az/Az = 1, and for all the cases shown, the ratio
fAz/V,(0) (normalized frequency, in cycles) is constant and equal to 0.25. This ratio
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F1G. 3.2. Detailed amplitude response in the propagation region for P and SV waves,
obtained using the modified Taylor series (MTS) method with N=39 coefficients. The
normalized frequency is 0.25 cycles. BS= Berea sandstone, MV= Mesaverde clayshale,
TS= Taylor sandstone, WG= weathered gypsum.

was kept constant because the downward-continuation operator is basically a function
of fAz/V,u(8). It is impossible to keep the ratio FAZ[Voy(6) equal for all the media
and for all propagation angles § because the phase-velocity dependence on 8 changes
differently in each medium. By fixing the ratio fAz/ Vi (0) we guarantee at least that
the amplitude and phase of the DEO will be the same at vertical propagation (9 =0) for
all these media.

All the filters calculated in Figure 3.2 show amplitude errors (1.0-|W (k. w)]) that are
generally greater than zero. This means, that these filters produce amplitude attenuation
for the larger dips. The weathered gypsum filter for the SV mode was the only one that
showed an amplitude value greater than unity in the propagation region; however, the
amplitude response of this filter did not exceed unity by more than 0.01 percent.

According to Thomsen (1986), a medium can be considered as weakly anisotropic if
the values of the anisotropy parameters € and § are small with respect to unity. On this
basis, the Berea sandstone can be considered as weakly anisotropic, the Taylor sandstone
as moderately anisotropic, the weathered gypsum as highly anisotropic (not likely to be
encountered), and the Mesaverde clayshale as an elliptically anisotropic material (e =~ §).
From Figure 3.2 and for the P propagation mode, we see that for the same length of
the filter and ratio fAz/V,4(0), the filters can propagate accurately (amplitude error
less than 0.1 percent) to a maximum angle of some 45 degrees in the Taylor sandstone
and Mesaverde clayshale, 55 degrees in the Berea sandstone, and only 25 degrees in the
weathered gypsum. For the Berea sandstone, the maximum accurate propagation angle
(55 degrees), is close to that found by Hale (1991a) for isotropic media. Note that for the P
mode the error curves in Figure 3.2 for the Mesaverde clayshale and Taylor sandstone are
similar. Although the values of € and é for Mesaverde clayshale are higher than those for
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F1G. 3.3. Amplitude of Taylor series expansions (TSE) for the downward-continuation
operators of the same VTI media as in Figure 3.2.

Taylor sandstone, the shape of the phase-velocity curve for € > § (Mesaverde clayshale)
is more simple. As a result, the Mesaverde clayshale behaves as a moderately anisotropic
material (similar to the Taylor sandstone) for the P propagation mode. Behavior similar
to that for all of the amplitude curves in Figures 3.2 through 3.4 holds for phase errors
as well (not shown here).

For the SV propagation mode (Figure 3.2), the filters can again propagate accurately
to about 55 degrees in the Berea sandstone, and, interestingly, the filter for Mesaverde
clayshale is more accurate for the SV propagation than for Ppropagation. The Mesaverde
clayshale behaves as an isotropic material for the SV propagation mode (there is no phase-
velocity dependence on 8 for € ~~ §). For Taylor sandstone, accuracy is reduced somewhat
to a maximum angle of 40 degrees, and, for the weathered gypsum, accurate results are
confined to propagation angles less than only 15 degrees.

The results in Figure 3.2 indicate that for a given propagation mode, the accuracy
of the calculated filters is influenced by the anisotropy in the media. In addition, for a
fixed TI medium, filter accuracy depends on the propagation mode. The main factor that
limits the accuracy of extrapolation filters calculated by the MTS method is the poorer
fit of the DEO by its Taylor series expansion for increasing propagation angles. Figure
3.3 shows the amplitude error for just the Taylor series expansions of the theoretical
DEO used to calculate the filters in Figure 3.2. These Taylor series expansions were used
in the right-hand side of equation (3.8) to obtain the coefficients h;(w) in the filters of
Figure 3.2. The Taylor series expansion in Figure 3.3 explain the accuracy behavior of
the filters calculated in Figure 3.2. The more accurate filters in Figure 3.2 are those with i
smaller amplitude error in their Taylor expansions for high propagation angles. Note E

also that the maximum angles accurately propagated in Figure 3.3 are larger than those
angles in Figure 3.2. The filters designed by the MTS method must not only match the
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F1e. 3.4. Amplitude response for the same filters as in Figure 3.2 but now evaluated as
a function of normalized frequency. Cutoff wavenumbers change for each filter according
with the value of e.

Taylor expansions but also attenuate the energy in the evanescent region. Therefore,
some degrees of freedom have been used to obtain attenuation, so the designed filter
cannot match exactly the Taylor series expansions.

Figure 3.4 shows amplitude spectra of the filters in Figure 3.2, now as a function
of normalized frequency (in cycles) rather than dip; 0.5 cycles corresponds to Nyquist
wavenumber (7/Az). Also, the amplitude scale has been increased to show attenuation
in the evanescent region. Even when the normalized frequency fAz/Vy4(0) is the same
for all the filters in Figure 3.4, the limit between the propagation and evanescent region
varies with the anisotropy in the medium. Spatial wavenumbers in the propagation
region are given by [see equation (3.2)] k,(6) = wsin 0Az/V,,(6). In general, and at
least for all the VTI media studied in this thesis, the spatial wavenumber is an increasing
function of the propagation angle § and reaches its maximum value in the propagation
region at =90 degrees. Then, the cutoff wavenumber or maximum wavenumber in the
propagation region is given by

- W
© V(r/2)

where k. is the cutoff wavenumber. In terms of normalized frequency, the last equation
can be written as

[

(3.20)

_ fAz
fc - X/ph(%'/2), (3.21)

where f. is the cutoff normalized frequency. All the filters in Figure 3.4 have a fixed

value of normalized frequency at vertical propagation (fo = fAZ/Vou(0) = fAZ/V,), so
we can write f, as
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fe=

If the medium is isotropic, Vpu(0) = Vpa(#/2), so f. = fo. Thomsen (1986) shows
that in the weak-anisotropy approximation Vp,(7/2) = V(1 + ¢€), so we can also write
approximately the normalized cutoff frequency as

Jo

fe= Tre (3.23)
Thus, for the four media studied, the maximum normalized frequencies f. (in cycles)
in the propagation region are about: 0.25 for the Berea sandstone, 0.22 for the Taylor
sandstone, 0.21 for the Mesaverde clayshale, and only 0.12 for the weathered gypsum.
The small amplitudes in Figure 3.4 for the different filters in their respective evanescent
regions, show that the extrapolators are clearly stable in that region. Note also in Figure
3.4 that even when the filter for the SV mode in the Taylor sandstone presents a bump
in the amplitude value in the evanescent region, the stability of this filter is guaranteed
(amplitude values are still less than unity).

oy o (3.22)

3.4.2 Least-squares method

In the least-squares method, the filter response is matched with the exact downward
continuation operator and not with its Taylor series expansion, as done in the Taylor
series method. We saw in Section 3.4.1 that the fit that the Taylor series expansion
around § =0 made with the theoretical DEO decreases for increasing propagation angles.
Thus, we expect that the use of the exact DEO in the least-squares method will increase
the accuracy of the calculated filters, especially for high propagation angles. However,
any filter designed by using a least-squares method will have an oscillatory amplitude
error known as the Gibbs phenomenon (Oppenheim and Schafer, 1989). As demonstrated
by Holberg (1988), the magnitude of this oscillatory error is reduced by restricting the
range of propagation angles for which the fit is done. This introduces the parameter fmq.,
[maximum design angle in equation (3.11)] in the calculation of the filter.

Although I cannot establish an analytical relationship between 6,,,, in the LS
method and the optimum M value found in equations (3.8) and (3.9) in the MTS
method, the two parameters have similar actions. 6., and M determine the maxi-
mum dip that can be extrapolated by a stable finite-length filter with given maximum
amplitude and phase errors in the propagation region by the LS and MTS methods, re-
spectively. Whereas 0,,,. tell us directly what is the maximum angle propagated by a
stable LS filter, the M value in the MTS method gives us only the order of the Taylor
expansion in equation (3.8) used to calculate an optimum MTS filter. The amplitude
error of this optimum MTS filter needs to be determined in order to find the maximum
dip that can be extrapolated with accuracy.

For a given length of filter, there exists a maximum design angle (6mqz) in the least-
squares method beyond which accuracy and stability are lost. This maximum allowed
design angle increases somewhat as filter length increases. Here, I define an accurate and
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F1G. 3.5. Detailed amplitude response in the propagation region for P and SV prop-
agation, obtained using the least-squares (LS) method with N=39 coefficients. The
normalized frequency is 0.25 cycles.

stable filter as one having a maximum absolute amplitude error of no more than 0.001
in the region 6 < 4,,,., and amplitude values less than unity for 8., < 6 < 90° and in
the evanescent region. An N-coefficient filter cannot achieve both goals (accuracy and
stability) for 8,,,. close to 90° because not enough degrees of freedom are available to
satisfy both conditions. In our implementation of the LS method, the maximum design
angles were obtained after several tests with different values of Oz, beginning with a
high initial value of fp.,; and reducing this value until an accurate and stable filter was
found.

Figure 3.5 shows amplitude spectra as a function of dip for the same VTI media
shown in Figure 3.2 and for filters obtained using the least-squares method. The filter
lengths are the same as those used to obtain the MTS results shown in Figures 3.2 and
3.4. Note the ripples in amplitude in the propagation region. Although some of these
amplitude values are greater than unity, they do not exceed 1.001, which guarantees
that application of these filters for about one-thousand steps of downward extrapolation
would magnify amplitudes by no more than e = 2.71. [This is the same criterion as
that used by Hale (1991a).] This amplitude error criterion (filter amplitudes less than
1.001) may be seen as arbitrary. It indicates only that the amplitude error for each
step of depth extrapolation will be 0.1 percent. Different amplitude error criteria can
be used in the design of the filters; however, because usually we have to do the process
of depth extrapolation for several hundreds of steps, we must always try to use a small
value (such as 0.1 percent) for this amplitude-error criterion. On the other hand, in
seismic exploration oil, one-thousand steps of depth extrapolation can be seen as a typical
maximum limit for depth migration. If we consider a typical small value for the sampling
depth of A2=7.5 m, one-thousand steps of depth extrapolation would correspond to 7500
m. Today, the great majority of oil targets exploited in the world are shallower than this
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depth.

From Figure 3.5 we see that the maximum accurate propagation angles obtained
by the least-squares method are, for all media studied, greater than those obtained by
the modified Taylor series method. The use of the exact DEO by the LS method allows
a better fit of this operator for high propagation angles that made by the Taylor series
expansion around #=0 in the MTS method. The better fit made by the LS method allows
an increase of the range of dips propagated with accuracy with respect to that of the MTS
method. On the other hand, Figure 3.5 also shows that the maximum dips propagated
with accuracy depends on the medium. For the four media studied, keeping N fixed at
39, the determined maximum design angles were as follows. P mode: 70 degrees for the
Berea sandstone, 65 degrees for the Taylor sandstone and Mesaverde clayshale, and only
30 degrees for the weathered gypsum. SV mode: 70 degrees for the Berea sandstone and
Mesaverde clayshale, 60 degrees for the Taylor sandstone, and only 20 degrees for the
weathered gypsum. Changes in the filter accuracy with respect to the anisotropy in the
medium will be discussed in Chapter 4.

3.4.3 Minimax method

As mentioned above, McClellan’s computer code was originally designed to obtain
bandpass filters, but the code can be easily changed for the design of other responses. In
bandpass filters the response is just unity (bandpass region) or zero (stopband region).
In depth extrapolation, the filters for the real and imaginary part of the downward-
continuation operator are calculated independently. For isotropic media, the desired
response of the real part of the filter for a given angular frequency w is given by

Az (w/Vor)2 —k2), 0<k < kmaz,
Re(k) = { cos (Az/(w/ 2"") _ ), 0<k< (3.24)
exp (—Azy /(K2 = k2,.), ks Sk < Fng,
and for the imaginary part
Im(p)y = { 52 (8@ Vor)? =) 0 < < i, (3.25)
0, ks <k L knyq-

A basic algorithm to obtain the desired response of several filters designed to do
depth extrapolation for a range of angular frequencies, for isotropic media, is given by

for(w =0, ..wmez){
kc = Qw/Vph;
kmaz = 2w Sin Omaz [ Voh;
for(k =0, ...knyq){

i£(k < Kymae) D(k,w) = exp (—mz,/kg _ k-’-)

43




else D(k,w) = exp (-—Az V&2 — krznaz)
}
}

Here k. is again the cutoff wavenumber, which bounds the propagation and evanescent,
regions, and Wmg, is the maximum angular frequency to extrapolate.

For TT media, the phase-velocity Vo changes with the ratio k/w in such way that
k/w = 2sin8/V,4(8), so a basic algorithm for the desired response for TI media is

for(w=0,...0maz){
kmaz = 20SIN(Omaz) [ Voh Ormaz);
for(k =0, ..kayg){
if(k < Kmas) then{
locate(k/w, 6);
ks = 2w/ Vo (0);

D(k,w) = exp (——z’Az\/k?» —-k2)}
else D(k,w) = exp (—Az\/kz - kﬁwz)

}

Here, locate is the same inverse interpolation function used in the Gazdag migration
program (section 2.6) that calculates the phase propagation angle § from a pre-computed
table of ratios k/w. A

As was done in the LS method, in the minimax method we match the flter response
with the exact DEO in the propagation region. In the evanescent region, and as discussed
in Section 3.2.3, we want the response of the filter to be a real decaying exponential
function, so the ideal response of the imaginary filter for the evanescent region must
be zero. In Figure 3.6, I show the filter response for the real and imaginary part of
the downward-continuation operator calculated for an isotropic medium with a velocity
Veh = 2000 m/s and for frequency f = 25 Hz, Az = Az = 10 m. For these values,
the normalized cutoff wavenumber is k. = 0.25. The total length of the filters is again
N =39, and here I used L = 50.

From Figure 3.6 we see that in the propagation region the real-part and imaginary-
part filters are successful in fitting the real and imaginary parts of equation (3.1) for
isotropic media. Thus, the real- and imaginary-part filters behave as the cosine and
sine, respectively, of the argument in equation (3.1). For =0, k, = wsin6/ Ver(0) = 0,
and for the values of w, Az, and V,, shown above, the argument in equation (1) is
wlAz[Von(0) = (2725)10/1000 = 7/2, where we have replaced Vpr(0) by half-velocity
Vpn(0)/2, appropriate in depth extrapolation of CMP stacked data. So the real and
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F1G. 3.6. Black solid lines: amplitude response for the real (Re) and imaginary (Im) part
of the theoretical downward continuation operator calculated for an isotropic medium
with V,, = 2000 m/s, and for a frequency of 25 Hz. Gray dashed lines: amplitude re-
sponse for calculated filters using the minimax method, with L=>50 and N=39 coefficients.

imaginary part values will be 0 and 1, respectively. At the cutoff wavenumber, the
argument in equation (1) is zero, so the real and imaginary parts will have values 1 and
0. Figure 3.6 also shows that with the use of a large weighting factor L, the approximation
is much better for the propagation than for the evanescent region. As mentioned above,
we have a trade-off between accuracy in the propagation region and stability in the
evanescent region. Specifically, if too small a value of L is used, the filter would reproduce
with good accuracy (more than necessary) the response of the downward continuation
operator in the evanescent region, but the accuracy in the propagation region would be
damaged. If a relatively large value of L is used, the accuracy in the propagation region
will be better, but the amplitude in the evanescent region could be so large (greater than
unity) that unstable filters would result.

Figure 3.7 compares the amplitude errors for two minimax filters with N=39 coeffi-
cients, but with two different values of L, L=30 and L=1. The amplitude error is shown
as a function of the dip angle in the propagation region (left), and also as a function
of the horizontal wavenumber (right) for both (propagation and evanescent) regions. In
Figure 3.7, the error in the propagation region for L = 50 is smaller than the error for
L = 1. The filter with L=>30 shows amplitude errors less than 0.001 for propagation
angles less than 60 degrees. As discussed before, this filter can be applied for at least
one-thousand steps of depth-extrapolation without producing a considerable amplitude
error. The quality of the fit in the evanescent region is the opposite: the filter with L=1
shows low amplitude errors in this region while the filter with L=50 shows maximum
amplitude errors of about 0.04. Nevertheless, the amplitude of both filters (not shown
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F1G. 3.7. Amplitude error of two minimax total filters (real plus imaginary part) with
the same parameters as those used in Figure 3.6, but with two different values of L. Left:
Error as a function of propagation angle in the propagation region. Right: Error as a
function of wavenumber.

here) in the evanescent region is less than unity, so both filters are stable in this region. In
practice, the L value is chosen so as to obtain the maximum accuracy in the propagation
region, while preserving attenuation throughout the evanescent region. Other values of
L were also tested but I found that the filter for =50 showed stability and maximum
accuracy.

‘The value L=50 obtained above may not be the best possible value that one might
use. For all the values tested, however, L=50 was the one that allowed calculation of a
stable filter with maximum accuracy. To obtain stability and maximum accuracy in the
MTS and LS methods, aside from the length N of the filter, only one parameter in each
method was changed; the order M of the Taylor expansion and 6,,,, in the MTS and
LS methods. To reach the same goal (stability and maximum accuracy) in the minimax
method, two parameters, 8,,,, and L, were needed, but in reality these two parameters
are not independent. Given a fixed value for @,,,,, only certain values of I can produce
stable filters with reasonable amplitude and phase errors. On the other hand, for a fixed
L, there will be a 8,4, value beyond which no filter that is both accurate and stable
can be found. Unfortunately, I was unable to find any analytical or empirical relation
between L and 8,,,., for a fixed value of N.

Figure 3.8 shows amplitude spectra as a function of dip for the same TI media shown
in Figures 3.2 and 3.3, for filters obtained using the minimax method. All the filters were
calculated using L=50. As in the LS spectra (Figure 3.5), the amplitude response for
the minimax-derived filters have ripples, but again, they do not exceed 1.001. Note that,
the maximum accurate propagation angles for all media studied are greater than those
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F1G. 3.8. Detailed amplitude response in the propagation region for P and SV propaga-
tion, obtained using the minimax method with 39 coefficients and L=>50. The normalized
frequencies are the same as those in Figure 3.5.

obtained by the MTS method, and similar to those obtained by the LS method. As was
done for the LS method, the maximum design angles in Figure 3.8 were obtained after
several tests with different 0,0

3.5 Accuracy for a range of frequencies

In Section 3.4 we studied the accuracy of depth-extrapolation filters calculated for a
single normalized frequency and we found that for all the methods implemented (MTS,
LS, and minimax), the filters calculated showed limited accuracy, measured in the abil-
ity to propagate steep reflectors correctly. The results of Section 3.4 are useful because
they show how the anisotropy limits the maximum dip that can be propagated for a
single depth-extrapolation filter. In application to broad band seismic data, however,
depth-extrapolation filters must be designed to propagate a wide range of normalized
frequencies, so we also need to study how the accuracy of the filters change with normal-
ized frequency.

3.5.1 MTS and LS methods

Figure 3.9 shows an amplitude-error contour for the Taylor sandstone using a 39-
coefficient filter based on the modified Taylor series method. The contour, shown as a
function of normalized frequency f = fAz/V,,(0) and propagation angle, corresponds to
an amplitude error of +1/1000; errors in the shaded region beneath exceed that 1/1000
threshold. Recall, the amplitude error is calculated as the difference
1.0— | W(F,8) |, so positive values in the error indicate amplitude values in the filter
less than unity. An amplitude error of 1/1000 corresponds to a filter amplitude of 0.999;
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F1G. 3.9. Amplitude error for the P mode in Taylor sandstone. The 39-coefficient filter
was computed by the modified Taylor series method. The contour level represents an error
of 1/1000 for each step of depth extrapolation. Within the shaded zone, the accumulated
amplitude error after 1000 steps is so large that results will be inaccurate for data in that
zone.

after 1000 steps of downward extrapolation with this error, the amplitude of the initial
waveform extrapolated will be (0.999)1%% ~ 0 4 times the initial amplitude; this is about
a 60-percent amplitude error. As mentioned earlier, 1000 steps of depth extrapolation
with a small value of Az may correspond to a depth of 7500 m, quite deep for many
practical situations in oil exploration.

The 1/1000-error threshold in Figure 3.9 is more or less independent of frequency.
The jagged nature of the amplitude-error contour [also seen in isotropic filters, Hale
(1991a)] is produced by changes in the number of terms M, which must be an integer,
needed to solve equations (3.8) and (3.9). For most of the normalized frequencies in
Figure 3.9 the changes in M do not alter the maximum dip propagated by more than
5 degrees. In Section 3.4.1, we saw that the number of derivatives M matched in the
propagation region for the MTS method is less than the number of filter coefficients V. M
filter coefficients are used to match these derivatives and the rest of the N — M coefficients
are used to obtain attenuation in the evanescent region. In general, the optimum value
of M increases with normalized frequency: the bandwidth of the propagation region
increases with normalized frequency, so more derivative terms are needed to match a
larger propagation region. At the same time, the bandwidth of the evanescent region
decreases with normalized frequency, so fewer, i.e., N — M, filter coefficients are used to
obtain stability in the evanescent region.

Figure 3.9 thus shows that, for most of the normalized frequencies, the filter for
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F1G. 3.10. Amplitude-error contours for the same filters as in Figure 3.9 but for accu-
mulated attenuation factors of 0.9(left) and 0.1(right). The contour levels correspond to
1000- and 100-steps of depth-extrapolation.

Taylor sandstone will attenuate waves propagating at about 50 degrees by a factor of
0.4 after 1000 steps of downward extrapolation. Waves propagating at larger angles (the
shaded zone) will be severely attenuated after 1000 steps. Therefore, the method of
downward extrapolation is unacceptable for waves in the shaded region. For isotropic
media, Hale’s (1991a) amplitude-error contours show comparable, but slightly better,
accuracy. Apparently, the anisotropy in the Taylor sandstone has not significantly re-
duced the accuracy of the filters calculated. Instead of the contour for 0.4 accumulated
amplitude attenuation after 1000-steps of depth-extrapolation [as Hale (1991a) used for
isotropic media], Figure 3.10 shows amplitude errors for the same filters as in Figure
3.9 but corresponding to attenuation factors of 0.9 (left) and 0.1 (right). The contours
in each plot of Figure 3.10 are labeled with the number of extrapolation steps needed
to accumulate these attenuation factors. Within the area under each contour, the fil-
ters will attenuate waves by factors of more than 0.9 (mild attenuation) and 0.1 (severe
attenuation), in the left and right plots, respectively.

In Figure 3.10, for mild amplitude attenuation (factor of 0.9 corresponding to a 10
percent of amplitude error), and for almost all the normalized frequencies, the maximum
dip propagated with this attenuation factor is about 45 degrees for 1000 steps of depth
extrapolation. This maximum dip increases by only a few degrees when the number of
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extrapolation steps is reduced from 1000 to 100. That means that reflectors dipping
at angles less than about 45 degrees can be propagated with about the same accuracy,
independent of the number of extrapolation steps. Reflectors dipping at angles greater
than about 45 degrees will be attenuated by a factor of 0.9 or more after just 100 steps of
depth-extrapolation. On the other hand, for severe attenuation (factor of 0.1 correspond-
ing to a 90-percent accumulated amplitude error), Figure 3.10 shows that the maximum
dip propagated with this attenuation factor changes with normalized frequency. Also,
maximum dip reduces by only 3 to 15 degrees when the number of extrapolation steps
is increased from 100 to 1000. In addition, we see that reflectors dipping at 90 degrees
will be attenuated by a factor of 0.1 or more for normalized frequencies greater than 0.1
cycles after just 100 steps of depth extrapolation.

In summary, Figure 3.10 shows that the MTS filters for the Taylor sandstone can
propagate reflectors dipping less than about 45 degrees with good accuracy for any num-
ber of depth-extrapolation steps used in practical situations. The amplitude error for
these filters is practically null for most normalized frequencies, for propagation angles
less than an average angle of about 45 degrees. This amplitude error suddenly increases
beyond this angle, and the filters become Inaccurate, even for a small number of steps of
depth extrapolation. In a qualitative way, Figure 3.10 also shows that reflections from re-
flectors dipping between 45 and about 60 degrees will be severely attenuated for almost
all normalized frequencies. We can expect to see these reflectors in a depth-migrated
section only if they are shallower than the equivalent of about 100 steps of depth extrap-
olation (100 Az). On the other hand, reflections from reflectors dipping at more than 60
degrees will be so attenuated by these MTS filters that these reflectors will not be seen
in the depth-migrated section even if they are quite shallow.

While the above amplitude errors indicate the attenuation of wavefields components
extrapolated in depth, phase errors indicate the mispositioning of the reflectors in depth
migration. Phase-error contours corresponding to the same filters in Figure 3.9. are
shown in Figure 3.11. The contours corresponds to phase errors of —7 /1000, -7z /100, and
—n /10 radians. The contours are labeled with the number of steps needed to accumulate
a phase error of one-half cycle or 7 radians. As was the case for amplitude error in Figure
3.9, the phase-error contours in Figure 3.11 are more or less independent of frequency.
Figure 3.11 also shows that these filters yield # radians of phase error after 1000 and
100 extrapolation steps for waves propagating at angles of about 50 and 60 degrees,
respectively. Thus, only 10 degrees of dip propagation are gained when the number of
extrapolation steps is reduced from 1000 to 100. In addition, Figure 3.11 shows that high
propagation dips (greater than 60 degrees) will be extrapolated with a huge phase error.
However, since Figure 3.9 shows that these high propagation dips will be attenuated,
wavefield components that cannot be propagated with accuracy will be attenuated by
the filters.

Figure 3.12 shows the corresponding amplitude- and phase-error contours, again for
a 39-coefficient filter and the Taylor sandstone, but now using the least-squares method,
With 8,0,=65 degrees. After 1000 steps of downward extrapolation, seismic waves prop-
agating at about 65 degrees will accumulate error that is comparable to errors for waves
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FiG. 3.11. Phase-error contours for the P mode in Taylor sandstone. The contour levels
are — /1000, —7 /100, and —x /10 radians for each step of depth extrapolation. In the
region beneath each labeled contour, the accumulated phase error after the corresponding
steps of depth extrapolation is so large that migrated positions will be inaccurate for data
in that zone.

propagating at only 50 degrees in Figure 3.9. Thus, for the same number of filter co-
efficients, more than 15 degrees of reflector dip has been gained through use of the
least-squares approach. However, as discussed in Section 3.4.2, the amplitude error of
filters designed by a least-squares method have an oscillatory character. The magnitude
of these oscillations determines the filter stability and its amplitude error accumulated
for every step of depth extrapolation. As opposed to MTS filters, which almost always
introduce attenuation, amplitude errors for LS filters are both positive and negative;
therefore, LS filters will produce both attenuation and amplification of the wavefield
components extrapolated.

Figure 3.13 shows amplitude errors for the same filters as in Figure 3.12 but for
an attenuation factor of 0.9 (left) and for an amplification factor of 1.1 (right). Within
the shaded area in each plot, wavefield components will be attenuated by more than 0.9
after 100 steps of depth extrapolation. The upper area, with many small closed contours,
shows wavefield components that will be either attenuated by a factor of 0.9, or amplified
by a factor of 1.1, after 1000 extrapolation steps. The many closed contour shows the
oscillatory character of LS filters. As opposed to the MTS filters, which propagate
reflections from reflectors of dip less than 45 degrees with almost no amplitude error, LS
filters introduce amplitude errors even for flat reflectors. However, the small contours in
each plot represent an accumulated error of only £10 percent after 1000 steps of depth
extrapolation.
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F1G. 3.12. Amplitude-error contours (left) and phase-error contours (right) for the P
mode in Taylor sandstone (39-coefficient filter; least-squares method).

Thus, Figure 3.14 shows the corresponding plots for severe attenuation and ampli-
fication factors of 0.1 and 2.0, respectively. Only high propagation dips (more than 65
degrees) are attenuated by as much as a factor of 0.1. Likewise, Figure 3.14 shows that
only a few wavefield components will experience an amplification factor, associated with
oscillations of the response in the propagation band, of as much as 2.0. For 100 steps of
extrapolation, no component will be amplified by as much as 2.0, so only the 1000-step
contour is shown. It is interesting to note that many normalized frequencies have an
amplification factor of 2.0 at about 60 degrees, just a few degrees before the maximum
design angle 0,,,,=65 degrees used for all the filters.

Figure 3.15 compares amplitude errors in the weathered gypsum for the Taylor series
and least-squares methods, again for a 0.4 attenuation factor, a 39-coefficient filter, and
for the P mode. The value of Omer used in the least-squares method was 30 degrees
for this highly anisotropic medium. Note the small increase (= 5 degrees) in the range
of angles for accurate propagation when the least-squares method is used. Figure 3.16
shows the corresponding errors for the SV propagation mode in the Taylor sandstone.
Omez in the least-squares method is 60 degrees. Comparing with Figure 3.9, we see an
example here of the fact that for a given medium (Taylor sandstone), the range of angles
for accurate propagation is better for the P than for the SV mode. Note in Figure 3.16
the irregular error (jump at about 0.18 cycles) in amplitude produced by the Taylor-series
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F1G. 3.13. Amplitude-error contours for the same filters as in Figure 3.12 but for accu-
mulated amplitude errors of 0.9 (left) and 1.1 (right). The contour levels correspond to
1000- and 100-steps of depth-extrapolation.

filter. This jump was produced because an abrupt increase of the M value was needed
to obtain a stable filter for that particular normalized frequency. I was unable to find an
explanation for why this just happen for this particular frequency. For the least-squares
filter, the error is uniform for angles less than the design angle (Bimar = 60 degrees).
Again, as for the P mode, the least-squares designed filter is considerably superior to the
MTS-designed filter.

In Figures 3.9 through 3.16, as noted above, the accuracy as measured by the con-
tours shown, is relatively insensitive to frequency for most of the frequency range of
interest. The same behavior holds for amplitude and phase errors for the Mesaverde
clayshale and Berea sandstone (not shown here). For those media, the results shown in
Figures 3.2, 3.5, and 3.7 for a single frequency, are representative of those over the range
of frequencies of interest.

3.5.2 Minimax method

We have seen that the LS method produces depth-extrapolation filters with better
accuracy than that obtained by the MTS method. Here, for a constant filter length, we
compare the accuracy of the minimax method with that of the least-squares method,
for isotropic and VTT media. Figure 3.17 shows the 1000-step threshold for an isotropic
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F1G. 3.14. Amplitude-error contours for the same filters as in Figure 3.12 but for accu-
mulated amplitude errors of 0.1 (left) and 2.0 (right). The contour levels correspond to
1000- and 100-steps of depth-extrapolation.

medium using 39-coefficient filters based on the LS method (left) and on the minimax
method (right). The maximum design angle in both methods is 65 degrees. In general,
comparing previous results obtained by Holberg (1988) and Soubaras (1992) for isotropic
media, and according to the results obtained in this thesis, 0, in the LS and minimax
methods are basically the same. As we will see in Chapter 4, this maximum design angle
may be related to a discontinuity in the imaginary part of the DEO. Figure 3.17 can be
compared with Hale’s (1991a) Figure 5 which shows the same amplitude error but for
filters calculated using the MTS method. Figure 3.17 shows an increase in accuracy of
about 15 degrees relative to that obtained by Hale (1991a) using the MTS method. As
seen in the figure, while the two filters have different accuracy at low frequency, con-
sidering the full range of frequencies both the LS and minimax flters attenuate waves
propagating at about 65 degrees by a factor of 0.4 after 1000 steps of downward extrap-
olation.

While both filters (LS and minimax) have comparable accuracy, the computational
costs are different; 105 different filters for each method were calculated in Figure 3.17.
The CPU time to calculate the 105 operators on the IBM RS /6000 Model 530 workstation
was 0.6 minutes for the minimax method, and 5.5 minutes for the LS method. The
difference in the cost between both methods can be roughly explained if we consider that
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FIG. 3.15. Amplitude-error threshold for the P mode in the weathered gypsum, again
for an attenuation factor of 0.4 and a 39-coefficient filter. Modified Taylor series method
(left), and least-squares method (right).

for each normalized frequency, the LS method involved the minimization of equation
(3.10) using a conjugate gradient algorithm. For a 39-coefficient filter, we saw in Section
3.2 that only (39 + 1)/2 = 20 coefficients are independent, but these coefficients are
complex numbers, so equation (3.10) has to be minimized for 40 unknowns. Thus, for
the LS method, the solution of equation (3.10) is equivalent to minimizing an objective
function of 40 unknowns using a conjugate gradient algorithm. On the other hand, and
as shown in Appendix B, the minimax method requires only an iterative evaluation of one
analytic function N times and a Lagrange interpolation of an Nth_order trigonometric
polynomial to obtain NN interpolated values.

For the synthetic examples shown later in this thesis, only 105 filters were calculated
for each isotropic or VTI medium. This is because the synthetic data here all involve
101 samples in time. For this number of samples in time, the number of frequency
components after a fast Fourier transform in time has to be the closest power of 2, in
this case, 27 = 128. For a prime-factor fast Fourier transform, and for 101 samples in
time, only 104 samples in frequency are required. Therefore, roughly, we try to calculate
a depth extrapolation filter for each frequency component in the synthetic data. In real
applications, with typical stack sections having 1000 or 1500 samples in time, many more
filters are needed, and the difference between the cost of using the minimax and the least-
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F1G. 3.16. Amplitude-error threshold for the SV mode in Taylor sandstone, for an atten-
uation factor of 0.4 and a 39-coefficient filter. Modified Taylor series method (left) and

least-squares method (right).

squares methods will be considerable, even comparable to the cost of the depth migration

itself. A
In the next section, we compare the accuracy of filters computed by the three meth-

ods for TI media using migration impulse responses.
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F1G. 3.17. Amplitude-error threshold for the P mode in an isotropic medium, obtained
by the LS method (left) and by minimax method (right). Within the shaded zone, the
accumulated amplitude error after 1000 steps is so large (greater than 6 db) that results
will be inaccurate for data in that zone.

3.6 Migration impulse responses in homogenous media

3.6.1 MTS and LS methods

The performance of the operators can perhaps best be exemplified through study of
migration impulse responses. The same w — z domain migration program used by Hale
(1991a) for isotropic media was used here to calculate the migration impulse responses for
the P and SV propagation modes. This same program can be used for both isotropic and
anisotropic media because, in migration by explicit filtering, the downward-continuation
process in both cases is performed by space-variant convolution of the data with the
explicit filters (Holberg, 1988). The convolution process is the same for both isotropic and
T1I media; we need only change the filter coeflicients. In addition, the number and length
of filters needed are the same for isotropic and TI media; therefore, the computational
cost of migration is exactly the same, independent of the degree of anisotropy, although
the accuracy of the extrapolation might be poorer for the TI medium. On the other
hand, to get comparable accuracy for isotropic and TI media, fewer filter coefficients
may be needed for the isotropic case. However, as Hale (1991a) showed for isotropic
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F1G. 3.18. Migration impulse responses via N=39-coefficient explicit extrapolators for

the P propagation mode in Taylor sandstone. Modified Taylor series method (a), and
least-squares method (b).

media, accuracy for an additional 15 degrees of dip is gained when the number of filter
coefficients is doubled from N=19 to N=39. Similarly, for those TI media for which
accuracy is more restricted than that for isotropic media, more coefficients might be
required. Therefore, for some TI media, the cost of the depth extrapolation can be higher
than that for isotropic media. However, as we will see in Section 4.3.2, the opposite holds
for TI media with certain values of anisotropy parameters.

Figure 3.18 shows P impulse responses for the Taylor sandstone using the modified
Taylor series method (a) and the least-squares method (b). In both tests, spatial sampling
intervals Az = Az = 10 m, and the time sampling interval At = 10 ms; therefore,
the Nyquist frequency is 50 Hz. For these parameters, the normalized frequency (f =
fAz/Vn(0)) varies from 0 to 0.3 cycles. The trajectory of one of the theoretical impulse
responses (shown in the figures as a dotted line) was calculated using the theoretical
group velocity and ray angle [equations (2.21) and (2.19)] for this medium. The number
of extrapolation steps needed to completely migrate each of the three impulse responses
from the top to the bottom of the section were about 40, 85, and 125 steps, respectively.
Note that the maximum dip propagated by the filters in each method is basically the
same for all the impulse responses, and corresponds to about 60 and 70 degrees for the
MTS and LS methods, respectively. Consistent with results above, the large dips are
more severely attenuated by the modified Taylor series filter than by the least-squares
filter. Although steep events (corresponding to high propagation angles) are attenuated
for both filters, the fit with the theoretical impulse response is good for the range of
angles over which the impulse responses are not severely attenuated.

The amplitude- and phase-error plots in Figures 3.10 and 3.14 can help us understand
the dip limitations observed in the migration impulse responses of Figure 3.18. However,
it would be difficult try to explain completely the results in Figure 3.18 using only those
amplitude- and phase-error threshold plots, because those plots were calculated for just
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F1G. 3.19. Migration impulse responses via N=39-coefficient explicit extrapolators for
the P propagation mode in the weathered gypsum. Modified Taylor series method (a)
and least-squares method (b).

a few selected attenuation factors. Although Figures 3.10 and 3.14 were calculated for
severe attenuation factors of 0.1, these figures roughly show the maximum dips that would
be seen in a depth-migrated section calculated using these filters. Thus, for the MTS
method, Figure 3.10 shows that for dip less than 60 degrees and normalized frequencies
less than 0.3 cycles, wavefield components will be attenuated by a factor of 0.1 or less after
100 steps of extrapolation. The maximum propagation angle observed in Figure 3.18a
corresponds to about 60 degrees. For the LS method, Figure 3.14 shows that dip less
than 70 degrees and normalized frequencies less than 0.3 cycles will also be attenuated
by a factor of 0.1 or less after 100 extrapolation steps. Seventy degrees is basically the
maximum propagation angle observed in Figure 3.18b.

Figure 3.19 shows P impulse responses for the highly anisotropic weathered gypsum,
using the modified Taylor series method (2) and the least-squares method (b). The largest
dip present in this response is lower than that obtained for the P-mode Taylor sandstone
filter (compare with Figure 3.18). The filters for the highly anisotropic weathered gypsum
are much less accurate than the filters for the Taylor sandstone.

Figure 3.20 shows SV impulses for Taylor sandstone (a) and Mesaverde clayshale
(b), respectively. Both responses were calculated using 39-coeflicient filters derived by
the more accurate least-squares method. Note the attenuation at large dips for the Taylor
sandstone. However, for the Mesaverde clayshale, steep events can be propagated accu-
rately. Given the same number of coefficients for both media, more accurate propagation
of the SV wave is obtained for the nearly elliptical Mesaverde clayshale.

3.6.2 LS and Minimax methods

Figure 3.21 shows P impulse responses for isotropic media using the LS method (a)
and the minimax method (b). In both tests, spatial sampling intervals Az = Az = 10 m,
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F1G. 3.20. Migration impulse responses via N =39-coeflicient, explicit extrapolators for
SV waves in the Taylor sandstone (a) and SV waves in the Mesaverde clayshale (b).
Least-squares method.

the time sampling interval At = 10 ms, and the velocity v = 2 km/s. The only nonzero
input trace, located at = 1.0 km, contained a single zero-phase Ricker wavelet centered
at ¢ = 1.0 s, with a peak frequency of 45 Hz. The two impulse responses look almost
identical.

Figure 3.22 shows P impulse responses using the LS method (a) and the minimax
method (b) for a vertical transversely isotropic medium with Thomsen parameters V =
2.0km/s, Voo = 1.0 km/s, € = 0.0, and § = -0.2. In both methods, the maximum design
angle used was 65 degrees. The CPU time required to calculate the explicit operators
was 0.9 minutes for the minimax method, and 6.0 minutes for the LS method. Again, it
is difficult to see differences in the two impulse responses. For comparison, Figure 3.23
shows impulse responses for a medium that is the same as that of Figure 3.22, except that
now ¢ = 0.3 and 6 = 0.2. I change only the values of ¢ and 6, because (as I will show in
the next chapter) Vo and V¢ have no influence on the shape of the P migration impulse
response. Compared with the results in Figures 3.21 and 3.22, the impulse responses here
are broader. Thus, the maximum midpoint value shown is now 3 km, and the nonzero
input trace, located at z = 1.5 km, contains the same zero-phase Ricker wavelet used
in Figures 3.21 and 3.22. The midpoint range was increased relative to that in Figure
3.22 because the higher ¢ value implies a higher horizonta] P velocity, which broadens the
impulse response. For this test, the CPU time required to calculate the explicit operators
was 1.1 minutes for the minimax method, and 6.5 minutes for the LS method.

As opposed to migration of diffraction hyperbolas where the migration aperture plays
an important role in the collapsing of the energy, depth migration of a single impulse in
a zero-offset section (z —t domain) distributes the energy of this impulse along a locus of
points (migration impulse response) in the z — z domain, so the migration aperture only
limits the final size of this impulse response. For most of the impulse responses shown in
this thesis, the migration aperture used was just enough to see propagation angles of 90
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Fi1G. 3.21. Migration impulse responses via N=39-coeflicient explicit extrapolators for
the P propagation mode in isotropic media. Least-squares (a) and minimax (b) methods.
The dashed curves represent the exact impulse response.

degrees; therefore, the dip limitations observed in the calculated impulse responses are
due solely to dip limitations in the filters.

Figure 3.24 summarizes the accuracy characteristics of the three methods imple-
mented. Three impulse responses for the P mode in the Taylor sandstone were calculated
using the MTS, LS, and minimax methods. The impulse response on the MTS method
shows a maximum propagation angle of 60 degrees, while the LS and minimax impulse
responses show a maximum propagation angle of 70 degrees. In all the three methods,
the position of the theoretical impulse response (dotted line) is honored for the range
of propagation angles shown in the figures. While the accuracy in the LS and minimax
methods is basically the same, the CPU time required to calculate the explicit operators
in the LS method is again almost five times longer than the time required in the minimax
method. Even the less accurate MTS method is twice as slow as the minimax method
for calculating the explicit operators.

It is difficult to establish a direct expression for the computational cost of the MTS
method in calculating the extrapolation filters. We already saw in Section 3.2 that
the MTS method requires the solution of several linear system of equations with sizes
depending on the number of derivatives M matched; therefore, the cost to calculate
a single filter in the MTS method changes with normalized frequency. Low normalized
frequencies require use of a small number of values M (see Section 3.5.1), so small systems
of equations would result. For high normalized frequencies, M approaches the number
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F1G. 3.22. Migration impulse responses via N=39-coefficient explicit extrapolators for
the P propagation mode in a TI medium with € = 0.0 and § = -0.2. Least-squares (a)
and minimax (b) methods.

of independent filter coefficients (IV + 1)/2, so the cost would not be greater than that
of solving a linear system of equations of (N +1)/2 by (N +1)/2. On the other hand, as
discussed before, the computer cost in the minimax method is independent of frequency
and requires only an iterative evaluation of one analytic function N times and a Lagrange
interpolation of an N**-order trigonometric polynomial to obtain NV interpolated values
(see Appendix B).

To calculate downward continuation filters for the SV mode, the same algorithms
can again be used. The only change is that now we use the SV phase-velocity function.
Figure 3.25 shows SV impulse responses for the LS (a) and minimax method (b), for a
medium with the same Thomsen parameters used in Figure 3.22. In both methods, the
maximum design angle used was 65 degrees. Curiously, the minimax impulse response
can handle the triplication better than does the LS impulse response. As we see in Figure
3.25, the fit with the theoretical triplication (dotted line) obtained by the LS method is
worse than the fit obtained using the minimax method. Much the same as for the previous
examples, the CPU time required to calculate the explicit operators here was 0.9 minutes
for the minimax method, and 6.0 minutes for the LS method. For comparison, the CPU
time taken in the migration step itself was 2.3 minutes. This is about 2 third the time
required just to calculate the filters in the LS approach. Therefore, use of the minimax
approach entails considerable savings for the overall migration process (3.2 minutes versus
8.3 minutes). Speed and accuracy were the main reasons for Soubaras (1992) to try the
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F1Gc. 3.23. Migration impulse responses via N=39-coefficient explicit extrapolators for
the P propagation mode with € = 0.3 and § = 0.2. Least-squares (a) and minimax (b)
" methods.

minimax method to calculate isotropic depth-extrapolation filters.

As discussed before, in real applications where some 1000 extrapolators may be
needed, roughly, multiplying by 10 the times above, the LS method would need about
60 minutes to calculate a table of 1000 extrapolators against some 9 minutes needed by
the minimax method. Naturally, the total cost of depth migration would depend on the
samples in time and midpoints to migrate in a zero-offset section, but for a typical stack
section of some 1000 midpoints and 1000 samples in time, the cost of depth migration
by using explicit operators would be roughly 6 hours. For cases like this, the minimax
method would represent a considerable saving in time for the overall migration process.

Figure 3.26 summarizes the accuracy characteristics for the SV mode of the three
implemented methods. Three impulse responses for the SV mode and for a constant value
of 0=1.6, were calculated using the MTS, LS, and minimax methods. The filters were
calculated for a constant value of o because (as I show in the next chapter) this parameter
mainly controls the depth-migration impulse response for the SV mode. Figure 3.26 shows
that the MTS method is unable to reproduce the triplications in the impulse response. For
this relative high value of o, the phase velocity (and therefore, the DEO) changes rapidly
with propagation angle, and the Taylor expansion around #=0 in the MTS method loses
accuracy quickly with propagation angle. In contrast, the LS and minimax methods use
the exact expression for the DEQO, and the accuracy in both methods is limited by other
factors (see Chapter 4).
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F1G. 3.24. Migration impulse responses via N=39-coefficient explicit extrapolators for

the P propagation mode in Taylor sandstone using the MTS, LS, and minimax (MM)
methods.
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FiG. 3.25. Migration impulse responses via N=39-coefficient explicit extrapolators for

the SV propagation mode with ¢ = 0.0 and 6 = -0.2. Least-squares (a) and minimax (b)
methods.

3.7 Angular amplitude distribution in explicit depth-extrapolation

In Section 2.7 we compared the amplitudes of depth-migration impulse responses in
TI media using a Gazdag algorithm against the amplitudes obtained by Tsvankin (1994)
using a weak-anisotropic approximation. The results showed that the two amplitudes
agree for a wide range of propagation angles, and that only when the weak-anisotropic
condition is violated do the amplitudes differ.

Figure 3.27 shows maximum wavelet amplitude values of the P-wave as a function of
group angle for depth-migration impulse responses (not shown here) obtained using the
Gazdag method (solid black line), the MTS method (dotted black line), the LS method
with ,,,.=60 degrees (dotted gray line), and the minimax method with 8,,.,=60 degrees
(solid gray line). The VTI medium has Thomsen parameters Vo= 2.0 km/s, Vo= 1.0
km/s, €=0.0, and §=-0.3. In the test, I use the same spatial and time sampling intervals
used in Figure 2.5 (Az = Az = 10 m; At = 10 ms.). The depth-migration impulse
response was calculated with up to 100 steps of depth extrapolation. Figure 3.27 shows
that MTS amplitudes follow closely the Gazdag amplitudes for group angles less than
45 degrees. For the same range of group angles, LS and minimax amplitudes also follow
closely the Gazdag amplitudes but with larger errors than MTS amplitudes. Beyond 45
degrees, the LS and minimax amplitudes are closer to Gazdag amplitudes than are the
MTS amplitudes.
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F1G. 3.26. Migration impulse response via N=39-coefficient explicit extrapolators for
the SV propagation mode with o= 1.6 using the MTS, the LS, and the minimax (MM)
methods.
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Fic. 3.27. Amplitude as a function of propagation angle for the P mode, for the same
VTI medium as in Figure 2.10. Black solid line: Gazdag amplitudes. Black dotted line:
MTS amplitudes. Gray dotted line: LS amplitudes. Gray solid line: minimax (MM)
amplitudes.

Figure 3.27 reflects the main characteristics of the explicit methods implemented
and as seen in previous curves. In the MTS method, the Taylor expansion of the filter
is made around vertical propagation so the error (with respect to the DEO) for low
propagation angles is small; however, this error increases quickly with propagation angle.
In the minimax and LS methods, the amplitude errors for low propagation angles are
greater than those for the MTS method, however these errors do not increase quickly as
in the MTS method for large propagation angles; they remain relatively small for a wider
range of propagation angles.

We saw in Sections 3.5 and 3.6 that the amplitude and phase errors of explicit filters
do not change much with normalized frequency. Here, as a rough approximation, I will
use the amplitude and phase errors of one explicit filter calculated for a single normalized
frequency to explain the amplitude distribution observed in Figure 3.27. Thus, Figures
3.28 and 3.29 show amplitude and phase errors in the propagation region for filters used
in Figure 3.27 with a normalized frequency of 0.25 cycles, and calculated using the MTS,
LS, and minimax (MM) methods. For angles less than about 30 degrees, the amplitude
and phase errors for the MTS method are very small in relation to the errors for the LS
and minimax methods. In both figures, MTS errors are in the order of 10~ for angles
less than 30 degrees. Beyond about 40 degrees, however, MTS errors grow quickly and
become larger than the LS and minimax errors. The LS and minimax errors also grow
quickly close to the maximum design angle of the filter (6. = 60 degrees).

Although Figures 3.28 and 3.29 show amplitude and phase errors just for a single
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F1G. 3.28. Amplitude error for filters with a normalized frequency of 0.25 cycles used in
Figure 3.27. Black solid line: MTS error. Black dotted line: LS error. Gray solid line:
minimax (MM) error.
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F1G. 3.29. Phase error for the same filters used in Figure 3.28.
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filter, the behavior for filters with other normalized frequencies is similar, so Figures 3.28
and 3.29 help us to understand the amplitude distribution in Figure 3.27. MTS amplitude
and phase errors for low propagation angles are so small, that MTS amplitudes basically
match perfectly Gazdag amplitudes for group angles of less than about 40 degrees. In
contrast, LS and minimax amplitude errors are on the order of 5.10™* for phase angles of
less than 8,,4,= 60 degrees. If we take this error as an average error for all the frequencies,
the total amplitude error after 100-steps of depth-extrapolation would be (1£5.1074)1%0 ~
=5 percent of amplitude error, and 65 percent after 1000 steps. The main advantage of
the LS and minimax methods over the MTS method, is that they maintain this small
amplitude error for a wide range of propagation angles (close t0 0oz )-

These results suggest that in order to best preserve amplitudes, it would be desirable
to apply MTS filters in areas with low dips. However, in areas with larger dips, the LS
and minimax methods can be applied to better recover the shape of the reflectors. I must
also point out that according with Soubaras (1992), the amplitude and phase errors in
isotropic filters designed by the minimax and LS methods, can be reduced if we reduce the
maximum design angle 8,,,.. The same statement can be applied to filters in TI media.
Figure 3.30 shows amplitude and phase errors for the same MTS and minimax filters in
Figures 3.28 and 3.29, but in this case, the maximum design angle in the minimax method
was reduced from 60 to 40 degrees. The minimax errors in the passband in Figure 3.30
are about 10 times smaller than those in Figures 3.28 and 3.29. The reduction in the
maximum design angle from 60 to 40 degrees, has reduced about 10 times the amplitude
and phase errors for propagation angles less than 30 degrees. However, as we see in
Figure 3.30, the errors in the minimax method are still higher than those in the MTS
method even though the MTS method here gives better large-dip accuracy. Similarly
(not shown here) the LS filter can be made more accurate in the passband by reducing
Omaz, Dut not as accurate as the MTS method.

In all the results obtained in this thesis, the minimax and LS methods showed
similar accuracy, but the minimax method was always less expensive than the LS method.
Soubaras (1992) also obtained similar results for isotropic media. I therefore conclude
that, from this point of view, we would always prefer to use the minimax method over
the LS method.

3.8 Explicit filters for the SH wave mode

For elliptical anisotropy (¢ = §), the P-wave phase velocity is given by

VZ(6) = VEy(1 + 26sin® ). (3.26)

This expression is exactly equivalent to the SH phase velocity [equation (2.13)] if we
make Vo = V0, and é = 7. Therefore, we can obtain SH wave filters by using the same
computer programs used for P wave filters after making the above associations among
Thomsen’s parameters. Figure 3.31 shows a depth-migration impulse response for Taylor
sandstone using the same MTS method for P waves but with Vjo = Vo = 1.829 km/s,
and € = § = v = 0.255. This figure also shows that up to a maximum group angle

69




Amplitude Error

Phase Error (radians)

Angle (degrees) Angle (degrees)

F1G. 3.30. Amplitude and phase errors for the same MTS and MM filters used in
Figure 3.28, but for a MM filter designed with 8,,,,= 40 degrees.

of 60 degrees, the MTS impulse response matches the shape of the theoretical impulse
response obtained using the exact SH velocity and group angle. Figure 3.32 shows the
impulse response for the same medium as in Figure 3.31 but now using the minimax
method for SH waves. Some 10 degrees of reflector dip has been gained through the use
of the minimax method. A similar result (not shown here) is obtained by using the LS
method.

3.9 TI media with a tilted axis of symmetry

In Chapter 2 we saw that the phase velocity at angle # in a medium with a non-
vertical axis of symmetry is equivalent to the phase velocity at angle § — ¢ in a medium
with a vertical axis of symmetry, where ¢ is the angle of the tilted axis of symmetry
with the vertical. I assume here that the tilted axis of symmetry is in the sagittal plane
(plane of propagation) so the phase and group velocity vectors do not deviate from the
incidence plane; therefore, a 2D treatment of the problem is possible. In azimuthally
anisotropic media, out-of-plane propagation needs to be considered and the problem can
be treated as a 2D problem only if the anisotropy is weak (Sena, 1991).

One might think, then, that the change in the argument of the phase velocity is the
only modification required to calculate filters for non-vertical TI media. However, addi-
tional considerations are neccesary. The phase velocity V,,(6) is an even function of the
propagation angle 8, so in VTI media, the horizontal wavenumber k, is an odd function
of 6 (k; = wsinb/V,;(6)). The DEO [equation (3.1)] is a function of k2; therefore, the
DEO is an even function of 6, and this symmetry of the DEO is reflected in the filter
coefficients, which are also symmetrical with respect to . For TI media with a tilted axis
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Fi1G. 3.31. Migration impulse responses via the MTS method for the SH propagation
mode in Taylor sandstone.
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F1G. 3.32. Depth-migration impulse responses via the minimax (MM) method for the
SH propagation mode in Taylor sandstone.

71




of symmetry, however, the horizontal wavenumber is given by k, = wsin8/V,.(8 — &),
which is no longer symmetrical with respect to 8 [k, (6) # k.(—8)]. This result introduces
loss of symmetry in the filter coefficients, so now, for the same filter length as in VTI
media, twice the number of filter coefficients need to be calculated.

Doubling the number of filter coefficients increases the computer time in the filter
calculation more than twice. For N=39 in the MTS method, for example, instead of
solving a 20x20 linear system of equations, we need to solve a 40x40 system. Similar
considerations can also be applied for the LS and minimax methods. However, the filter
calculation for non-vertical axis of symmetry can be made independently for positive and
negative values of the phase angle #. In Appendix C, I show that the complex filter
coefficients for a tilted axis of symmetry (,) can be expressed as

tn = %(pn‘*’nn) +%H* (p‘ﬂ —nn) 7)':07""‘/\]/2
1 1
trn = 5(Pn+ 1) + SH* (0 —pn) n==-N/2,...,~1 (3.27)

where p, and n, are symmetric complex filter coefficients, H is a discrete Hilbert trans-
form operator, and * stands for convolution in the time domain. Rather than try to
calculate a single filter with a large number of coefficients, I calculate two filters, each
with half of the needed number of coefficients; one filter for positive (p») and another for

negative (n,) values of . The filters are calculated using a horizontal wavenumber k,
given by

L _ [ 2wsinb/Va(6=6), 08>0, 6=0,...00, (5.28)
e ——2&)81119/‘/;,;;(0'{'@), if <0, 6 = —bmaz,---,0, )

where 1 have replaced Vp,(—0 — ¢) by Vi (6 + ¢). With this approach, the computer time
needed to calculate the explicit operators for non-vertical TI media is just twice the time
needed for VTT media plus the time needed to calculate equation (3.27). The computer
cost of equation (3.27) is small; it involves only 3N complex additions and the cost of
two convolutions to calculate the Hilbert transform of the real and imaginary part of the
difference p, — n,,

The computer time for the depth-migration process also increases for non-vertical
TI media. In VTI media, the convolution process that does the depth-extrapolation from
depth z to depth z + Az is defined (Holberg, 1988) as

Plw,z,z + Az) = hy(w)P(w,z, 2)+
(N-1)/2
>, mW)[P(w,z +1Az,2) + Plw,z —lAz,2)],  (3.29)
{=1

where P is the seismic wavefleld, and h;(w) are the filter coefficients. The convolution
process in equation (3.29) uses the symmetry of the filter coefficients when it multiplies
hi(w) with the wavefield evaluated at positions z +[Az and z —IAz. For non-vertical TI
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F1G. 3.33. Depth-migration impulse responses via the minimax (MM) method for the
P propagation mode and for axis of symmetry tilted at 20 degrees from vertical. The
dotted line represents the shape of the theoretical impulse response.

media, the symmetry in the filter coefficients is lost, and the convolution process becomes

P(w,z,z + Az) = ho{w)P(w, z,2)+
(N¥N-1)/2
> hw)P(w,z +1Az,2) + hoy(w)P(w, z — 1Az, 2), (3.30)
I=1

where h; # h_;. The total cost in explicit depth extrapolation is proportional to the
number of times that the convolution process in equations (3.29) or (3.30) has to be
executed. This process must be executed for all frequencies, horizontal distances, and
depths. From equation (3.29) we see that for a filter of N= 39 complex coeflicients,
the convolution process for VTI media consists of 20 complex multiplies and 38 complex
adds. Comparing equations (3.29) and (3.30), we see that the increase in the cost of the
convolution process for a tilted axis of symmetry is just the addition of (N —1)/2 complex
multiplications; the number of complex adds is the same for both process. However, on
the IBM RS/6000 workstation the loop that executes equations (3.29) or (3.30) can be
highly optimized, so the final cost of the convolution process for non-vertical TI media
is just 24-percent higher than the cost for VTI media for a filter of N=39 coefficients.
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F1G. 3.34. Depth-migration impulse response via the LS method for the SV
propagation mode and for a tilted axis of symmetry of -40 degrees.

Figure 3.33 shows a migration impulse response for the P mode using the minimax
method. The TI medium has Thomsen parameters Vo= 2.0 km/s, Vo= 1.0 km/s, e=
0.1, 6= -0.1, and an angle of 20 degrees of the symmetry axis with the vertical. Again the
minimax impulse response follows the shape of the theoretical impulse response (dotted
line) for a wide range of propagation angles. In Chapter 4, I study the accuracy of the
operators for non-vertical axis of symmetry. For the particular values of €=0.1 and §=-0.1
in Figure 3.33, the filter coeflicients p, and n, of equation (3.27) were calculated using
the same 6,,,, = 65 degrees.

The CPU time to calculate the depth-migration section was 1.86 minutes. For the
same medium, but with a vertical axis of symmetry, the CPU time to calculate a similar
depth migrated section was 1.45 minutes; thus, here, 28 percent more CPU time is
required to calculate the migrated section for non-vertical axis of symmetry.

Figure 3.34 shows an impulse response, now using the LS method for the SV mode,
for a TI medium with Thomsen parameters V= 4.0 km/s, Vyo= 2.0 km/s, e= 0.4, 6=
0.0, and for an angle of -40 degrees of the symmetry axis with the vertical. Figure 3.34
also shows that the calculated impulse response fits well the shape of the theoretical
response (dotted line). The CPU times required to calculate the depth-migration section
are the same as for the example in Figure 3.33. For comparison, Figure 3.35 shows the
shapes of theoretical impulse responses for the same medium as in Figure 3.33, but for
symmetry axis that is vertical and symmetry axis tilted at -40 degrees.
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F1G. 3.35. Shapes of the theoretical SV depth migration impulse responses for the same
TI medium as in Figure 3.24, but for a vertical and -40 degrees axis of symmetry.
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Chapter 4

ACCURACY OF EXPLICIT DEPTH EXTRAPOLATION IN TI MEDIA

4.1 Introduction

In Chapter 3 we saw that for all the explicit methods developed, and for the TI
media considered, the accuracy of the explicit depth-extrapolation process as applied to
depth migration in TI media depends not only the propagation mode under consideration
(P or SV), but also on the elastic properties of the medium.

Rather than study filter accuracy for specific media, here I examine the filter accu-
racy as a function of Thomsen’s parameters. Existing laboratory and field data (Thom-
sen, 1986) indicate that many sedimentary rocks have weak to moderate anisotropy with
le] < 0.3, and [6] < 0.2. In addition, I also limit the variation of Thomsen’s parame-
ters Vi and Vo to an important range of practical applications, 0.3 < V,0/V,o < 0.7.
First, I study which of the Thomsen’s parameters most influence the calculation of ex-
plicit operators for the P and SV propagation modes. As described in Chapter 3, the
downward-extrapolation operator (DEO) in TI media is a function of the phase velocity
Ver(6). Specifically, the dependence of the DEO on propagation angle is determined by
the angular dependence of phase velocity V,4(8). Previous studies by Tsvankin (1995)
and by Alkhalifah and Tsvankin (1994) have determined which anisotropy parameters
control most the values of the phase and group velocity. In addition, Alkhalifah and
Larner (1994) determined that € and § are the parameters that mainly control the migra-
tion error produced when isotropic migration algorithms are used to migrate data from
anisotropic media. Here, I build on some of those results to study how the anisotropy in-
fluences the theoretical and computed migration impulse response for the P and SV-wave
propagation modes in TI media.

After studying migration impulse responses for several choices of anisotropy values, I
do tests on synthetic seismograms to show that for the P propagation mode, we need only
calculate explicit operators for each pair of € and 6 values. Lateral and vertical changes in
vertical P-wave velocity (Vo) are handled by calculating tables of operators for different
ratios of normalized frequency, fAz/V,q, just as is done for isotropic media. The vertical
shear-wave velocity (Vo) does not affect the phase-velocity itself and therefore does not
have a significant influence on accuracy for typical values of € and 6 found in sedimentary
basins. By comparing theoretical migration impulse responses for the SV mode, I show
that to a good approximation, we need only compute explicit operators for each ¢ value
in the SV mode, where 0 = (Vj/Vi0)%(¢ — 6) is a parameter introduced by Tsvankin and
Thomsen (1994).

I use the least-squares method to calculate explicit operators for several values of ¢
and §, and for the Pmode. The minimax method (not shown here) would give comparable
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results. Somewhat surprisingly, I find that the accuracy of the operators in the P mode
can actually surpass that for isotropic media, increasing with increasing value of §, and
decreasing for increasing value of €. For the SV mode, I use the minimax method to
calculate the explicit operators because it produces better impulse responses than does
the least-squares method. The accuracy in the SV mode appears to be independent of
o, for typical values of 0.

To study the accuracy problem in isotropic media, I calculate explicit filters for the
real and imaginary part of the DEO, but this time, as opposed to what was done in
Chapter 3, I calculate the filters without amplitude constraints in the evanescent region.
The idea is to use all the degrees of freedom in the filter in order to ensure the best
accuracy obtainable in the propagation region. I find that the amplitude and phase
errors in the imaginary-part filter dominate the amplitude and phase errors in the total
filter. This behavior can be explained by using the convergence properties of Fourier
series for the imaginary-part DEO. For TI media, I follow the same approach used for
isotropic media, and study the properties of the imaginary-part DEO to explain the
dependence of the accuracy of the filters on the values of € and 6.

4.2 Migration and DEO dependence on Thomsen’s parameters

For isotropic media, Thomsen’s parameters ¢ and é are zero, so from the equations
derived in Chapter 2, the P and SV phase-velocities are independent of the propagation
angle. Therefore, in isotropic media, we need only calculate enough explicit extrapo-
lators to accommodate variations of velocity with vertical and horizontal position. As
pointed out by Holberg (1988) and Hale (1991a), lateral velocity variations are handled
by laterally variable extrapolators.

As we saw in Section 3.6.2, the operator calculation (for any method: MTS, LS, or
minimax) is sufficiently computationally intensive that calculation of the operators dur-
ing the extrapolation process would slow down the speed of the overall migration process
excessively. Additionally, the operator calculated for any given normalized frequency
is likely to be used many times, either within the migration process (due to the recur-
sive character of the extrapolation) or in repeated applications of migration processing.
Therefore, following Blacquiére et al. (1989), I calculate the operators in advance and
store them in a table.

The number of operators required will depend on the range of velocity values and the
number of frequencies. During the extrapolation process, the appropriate operator, based
on the determined local value of wavenumber, is selected from the table and applied to
the data. This procedure could lead to a large table of operators because many different
wavenumbers can be required during the migration process. The main advantage of using
a table of extrapolators, however, should be its limited size. We saw in Chapter 3 that
for practical applications, about 1000 extrapolators might be needed, so the size of one
of these tables for a symmetric filter of N=39 complex coefficients (of which only 20
are independent) will be about (1000 extrapolators)x(40 real numbers)x(4 bytes)=1.6
kbytes. The disadvantage of using such a table is that, for any local computation, the
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F1G. 4.1. Reflector model consisting of horizontal reflectors and segments with dip
ranging from 30 to 90 degrees.

operator actually required is not likely to be present in the table. I address this problem
by simple rounding, i.e., I select the operator from the table with normalized frequency
nearest to the required one.

Thus, a table of extrapolators is calculated for a typical range of normalized fre-
quencies fAz/V,,; then, during the depth-extrapolation process, from one depth to the
next and for a constant frequency f, lateral velocity variations are handled by choos-
ing different precalculated filters. For constant spatial sampling intervals Az and Az,
a filter calculated to propagate the normalized frequency f;Az/ Vip can also be used to
propagate any normalized frequency foAz/Va, such that fi/Vip, = fofVap.

In TI media, the P and SV phase velocities and, therefore, the downward-continuation
operator are functions of four variables (Thomsen’s parameters). Therefore, it might seem
that we need a different extrapolator table for each combination of the four Thomsen’s
parameters. However, as mentioned earlier, a look at the phase-velocity equation for
the P mode [equations (2.11) and (2.14)] reveals that the dependence on vertical P-wave
velocity for P data is just a multiplicative factor. Elsewhere in the equation, Voo always
appears in the combination V,o/V,. For example, equation (2.14) depends just on the
ratio Vy/Vpo, so if we keep €, 6, and the Vio/Vpo ratio constant, the ratio of P phase
velocities for two different values of Vg (e.g., V%, Vpo) will be 1ndependent of propagation
angle 6. That is,

Ve (9; Vp0> .€,0)
VP(ea Vp07 V;o’e’ 6)

= constant. (4.1)
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A similar relation holds for the SV mode when two different values of V,g are considered.

"To test this relation for the P mode, I generated synthetic seismograms for a hetero-
geneous (Vo variations only; €, 8, and V,o/V,o are independent of position) transversely
isotropic medium with a vertical axis of symmetry (VTI). Figure 4.1 shows a model
containing horizontal reflectors and segments with dip ranging from 30 to 90 degrees.
The medium has the elastic properties of Mesaverde clayshale (Thomsen, 1986), with a
P-wave vertical velocity Vio(z,z) = 3.794 + 0.5z + 0.5z km/s, where z and z are in km.
Figure 4.2a shows the zero-offset P-wave section corresponding to this model and calcu-
lated using a ray-tracing program for TI media (Alkhalifah, 1995b). This Kirchoff-based
algorithm does not yield true amplitudes of elastic wavefields, but does yield accurate
reflection-time information. Figure 4.2b shows the depth migration obtained using Hale’s
(1991a) w — z depth-migration program, with VTI depth extrapolators calculated using
the LS approach for a range of normalized frequencies (fAz/Vy) from 0 to 0.5 cycles.
During the calculation of the operators I assume constant Vo= 3.794 km/s, so the changes
in normalized frequency where just due to changes in f. The maximum design angle in
the LS method was 60 degrees; therefore, only reflectors with dip up to 60 degrees are
recovered. The 75-degree reflector is attenuated and misplaced due to the amplitude and
phase errors of the filter for dip greater than 60 degrees, and the 90-degree reflector is
completely lost.

The results in Figure 4.2b show that even when Vo changes with vertical and hori-
zontal position, depth extrapolators calculated for constant Vi, but for different values
of f, can adequately handle these velocity variations. That is, the depth extrapolators
all have the same 8 dependence. For the depth migration, Figure 4.2b, 501 common
midpoints, 301 time samples, and 401 depth extrapolation steps were used. The total
CPU time on the IBM RS/6000 Model 530 workstation was 20.5 minutes, the same as for
an isotropic migration for a medium with comparable heterogeneity. For comparison, the
CPU time taken for the same depth-migration calculation but using a Gaussian-beam
algorithm (Alkhalifah, 19952a) was 28.5 minutes.

Now, let’s consider the dependence of migration results for the P mode on V,o/ Vo
As suggested by Tsvankin (1995), the ratio of vertical velocities , V;o/V, does not have
a significant influence on the P-mode phase velocity, for typical values of € and § found in
sedimentary basins (0 < € < 0.3, —0.2 < § < 0.2). If the ratio V,o/V,o has little influence
on the P-wave phase-velocity, then this ratio should also have little influence on the
group velocity and group angle, and therefore, on the migration impulse response given
by equation (2.21). Figure 4.3 shows impulse responses calculated using the theoretical
behavior of group velocity as a function of ray angle for a medium with €=0.3 and §=-
0.2, and for ratios V,o/Vy of 0.3, 0.5, and 0.7 (a wide range). All the impulse responses
overlap to such an extent that it is hard to distinguish them.

The same reasoning may be applied to study the influence of the ratio Vyo/Vy on
depth migration via explicit filtering. As a test, I calculated a zero-offset section {Figure
4.4a) using the same ray-tracing program used to generate Figure 4.2a, corresponding
to the model of Figure 4.1, but now using constant values for the four parameters:
Vo(z,2) = 3.0 km/s, Vo/Vp = 0.5, € =0.0, and § =-0.2. Because the medium is
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F1G. 4.2. Zero-offset synthetic section (left), for a model with the anisotropic properties
of Mesaverde clayshale, corresponding to the reflector model in Figure 4.1 and vertical

velocity Vio(z, z) = 3.794+ 0.52+4 0.5z km/s. Depth migration (right) obtained using LS
extrapolators.
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FIG. 4.3. P-wave migration impulse responses for a constant value of Voo =3 km/s, e =
0.3, § = -0.2, and for ratios V,o/Vyo = 0.3, 0.5, and 0.7.
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FIG. 4.4. Zero-offset synthetic section (left), for 2 homogenous model with V3o = 3 km/s,
Vo = 1.5 km/s, ¢ = 0.0, and & = 0.2, corresponding to the reflector model in Figure 4.1.
Detail of depth-migration (right) obtained using minimax explicit filters with the correct
Thomsen’s parameters.

homogeneous, only the reflectors with relatively small dip (up to 60 degrees) can be
recorded in the zero-offset section for reasonable values of midpoint distance and two-way
time. Figure 4.4b shows the depth-migration results using minimax explicit filters with
Omez = 65 degrees and with the correct ratio Vio/Vpo=0.5. For comparison, Figures 4.5a
and 4.5b show depth migration results when we use the correct vertical velocity Vo = 3.0
km/s, but with erroneous ratios V,o/Vp0=0.3 and 0.7, respectively. All the minimax filters
in Figures 4.4b and 4.5 were calculated using the same ,,4. = 65 degrees, so differences
in the results can be related to just the choice of Vio/Vy ratio. From Figure 4.3, we see
that the use of the wrong Vio/Vyo ratio has not produced any significant changes in the
depth-migrated sections.

Similar tests done for different values of ¢ and §, showed the strongest influence
of the ratio Vo/V,o Was observed for € = 0.3 and negative values of 8. As we will see
later in this chapter, however, the accuracy of explicit filters calculated for € = 0.3 is
so low that the filters would cause severe attenuation of the 60-degree reflector. To
study the influence of the ratio Vio/Vy for €=0.3 and § < 0, I used a Gaussian-beam
migration algorithm because it has no dip limitations for homogeneous media. First,
I calculated a zero-offset section (not shown here) using the same ray-tracing program
as for Figures 4.2a and 4.4a, and the same Vi and V.o values as in Figure 4.4a, but
with €=0.3 and 6=-0.2. Figures 4.6a and 4.6b show the depth-migration results using a
Gaussian-beam migration algorithm (Alkhalifah, 1995a) when we use the correct vertical
velocity Vi = 3.0 km/s, but with erroneous ratios Vi0/Vp0=0.3 and 0.7, respectively. In
Figure 4.6, we see that the use of the wrong Vs Vo ratio produces lateral mispositioning
of the reflectors dipping at 45 and 60 degrees. However, the position errors even for this
worst case of €=0.3 and 6 < 0 are still relatively small. The errors in lateral position are
approximately only (Ay/y ~ 100 m/12000 m) 0.8 percent of the total migration distance,
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F1G. 4.5. Depth migration of synthetic section in Figure 4.4a obtained using minimax

explicit filters with the same Vjg, ¢, and 6 as in Figure 4.4b, but with V,o/V,q = 0.3
(right), and Vio/V,0 = 0.7 (left).

corresponding to an equivalent error in migration velocity (Av/v o~ 1Ay /y)of only 0.4
percent. Clearly the migration is not sensitive to the velocity ratio Vio/V,y. For the
special case of elliptical media (e=$6), as shown by Thomsen (1986), V.o has no influence
on the P phase-velocity.

In contrast to the behavior of the P mode, for the SV mode the theoretical impulse
response of migration ¢s influenced by changes in V,4, 2 phenomenon not seen in isotropic
media. Tsvankin and Thomsen (1994) have shown that in the weak-anisotropy approxi-
mation, the SV phase-velocity depends on a particular combination of Voo, Vio, €, and 6
given by the parameter ¢ = (V,/V,0)2(e — 6). For constant values of ¢, &, and Vjy, the
value of o changes with Vg altering the SV phase-velocity. To study how the changes
in phase-velocity alter the SV migration impulse response, Figure 4.7 shows Impulse re-
sponses for media with € = 0.0, § = 0.1,V =1.0 km/s, and for Vio/Vpo ratios of 0.3,0.5,
and 0.7. The largest differences occur for intermediate propagation angles (near possible
triplication points). For near-vertical and near-horizontal propagation angles, results are
independent of V,4/ Vao.

In order to test the last result, we generate synthetic seismograms for the homoge-
neous VTT medium of Figure 4.82 containing a horizontal reflector and a segment dipping
45 degrees. The medium has the elastic properties of the shale of Jones and Wang (1981)
with Vo= 3.048 km/s, V,,=1.490 km/s, e=0.255, and §=-0.05. Figure 4.8b shows the
zero-offset z—component generated by vertical-force exploding sources distributed along
the reflector. The wavefield was calculated using an elastic anisotropic finite-difference
program (Fei, 1993). This program calculates the complete elastic wavefield (multiples,
converted waves, etc.), so the z-component section of Figure 4.8b shows not only P-waves
generated by the vertical forces, but also SV-waves produced along the dipping reflector.
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FIG. 4.6. Depth-migration of synthetic section in Figure 4.4a obtained using a Gaussiam-
beam migration algorithm with the same Vi, €, and § asin Figure 4.4, but with V,o/ Vo =
0.3 (right), and Vio/Vyx = 0.7 (left).

To obtain stability in the finite difference program, Fei (1993), I use 2 sampling interval
of At = 3.5 ms and spatial sampling intervals of Az=Az=20 m to generate Figure 4.8b.
Because the zero-offset section in Figure 4.8a has no high-frequency content (the source
function is 2 Ricker wavelet with dominant frequency of 15 Hz), I resampled the origi-
nal section to a new sampling interval of At=10 ms to reduce the cost of the migration
process.

Figure 4.9a shows the depth-migration corresponding to the zero-offset section of
Figure 4.8a obtained using SV-mode minimax explicit filters with the correct vertical ve-
locity V,0=1.490 km/s and the correct ratio Vyo/V,0=0.49. For Figure 4.9b, an erroneous
ratio V,o/Vy0=0.7 was used. The dashed line shows the original model in depth. As I
pointed out in Chapter 2, in the downward extrapolation of zero-offset data I assume that
the recorded wavefield contains only a single propagation mode. P-wave events present in
the (full elastic wavefield) zero-offset section of Figure 4.8a are propagated erroneously
by the SV filters, so these events appear in erroneous positions and, thus, as noise in
the final depth-migrated sections of Figures 4.9. To image these events properly, elastic
anisotropic full-wave migration schemes are needed such as, for example, reverse-time
migration (Fei, 1993). Alternatively, the P- and S-wavefields in the elastic-wave data
need to be separated prior to applying the migration process.

Our main interest in Figure 4.9, however, is to see how the choice of the ratio Vio/Vyo
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F1G. 4.7. Migration impulse responses for the SV mode and for constant Voo = 1.0 km/s,
but changing the velocity ratio V,q / Vo from 0.3 to 0.7. In all the curves, € and § are the
same (e = 0.0, § = -0.1).

changes the depth-migrated section. Figure 4.9a shows a good fit between the position
of the dipping reflector in the migrated section and the position in the original depth
model, when the correct ratio Vio/Vio is used. Because each of the exploding sources
used in the modeling program is a vertical force, no SV energy was generated for the flat
reflectors; therefore, the flat reflectors cannot be recovered using just shear-wave data.
On the other hand, Figure 4.9b shows that the use of the wrong V4 value produces a
lateral mispositioning of the dipping reflector. As pointed out above, this mispositioning
would not appear in isotropic media, where migration of shear-wave data can be done
independently of the value of the P-wave velocity.

‘The CPU time to calculate the depth-migration sections in Figure 4.9 via explicit
filtering was 3.8 minutes. If we were to migrate the z and ycomponents of the zero-offset
section (shown later), the migration times for all the sections would be the same. Thus,
the total CPU time to migrate the three-component section via explicit filtering would
be 11.4 minutes. For comparison, the CPU time needed by the reverse-time migration
algorithm (Fei, 1993) was 29 minutes. The comparison may seem unfair because in the
depth-migration calculation via explicit filtering I increased the sampling interval from 3.5
to 10 ms. However, for the frequency content in these tests, the reverse-time migration
algorithm still needs a small sampling interval of 3.5 ms in order to avoid numerical
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FIG. 4.8. Reflector model consisting of a horizontal reflector and a segment with a dip of
45 degrees (a). Zero-offset, z-component synthetic section for a homogenous model with
Thomsen parameters corresponding to the Jones and Wang shale.

dispersion, whereas the explicit filtering approach does not. The cost of migration via
explicit filtering and reverse-time migration would be about the same if the number of
samples in time were equal in both process.

The final depth-migrated sections produced by reverse-time migration would not
have the mode-conversion problems that we saw in Figure 4.9. However, today’s conven-
tional sequence of seismic data processing [velocity analysis and normal moveout (NMO)
correction based on a particular propagation mode, followed by common midpoint (CMP)
stacking] would typically yield a “zero-offset section” that emphasizes one mode, while
attenuating others, such as seen in Figure 4.8b.

Let us now consider the influence of Thomsen parameters in the SV mode, but
with the value of o held constant. Figure 4.10 shows migration impulse responses for a
constant value of ¢ = 1.6, and for V,o = 1.0 km/s. The solid black curve corresponds
to a Vo = 2 km/s, e = 0.2, and § = —0.2. The dashed gray curve was calculated for
Vpo = 2.828 km/s, € = 0.0, and § = —0.2; and, for the dotted black curve, Vo = 2.309
km/s, € = 0.15, and § = —0.15. Even when all the ratios V,0/Vyo are different, as are the
values of € and 6, the three curves are similar except in the region close to the caustic.
Figure 4.11 shows a detail of depth migration obtained via SV minimax filters for the
same zero-offset section of Figure 4.8a with the correct vertical velocity V;0=1.490 km /s
and for 2 fixed value of 0. Vy=4.96 km/s, ¢=0.1, and §=-0.015 for the section in Figure
4.11a, and Vju=2.98 km/s, €=0.319, and 6=0.0 for the section in Figure 4.11b. Although
all the ¢, 6, and Vo values are quite different in Figures 4.11a and 4.11b, use of the
correct value of o produces a good fit of the depth-migration results with the original
depth model. In general, for migration of the SV mode for T1 media, instead of using
four Thomsen’s parameters, it apparently suffices to use just o, along with V.

Returning again to the P-wave mode, recent studies [Alkhalifah and Larner (1994),
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F1G. 4.9. Depth-migration of synthetic section in Figure 4.8b obtained using minimax
SV filters with the same Vg, €, and § in Figure 4.8b, but with the true Vio/Vpp=0.49
(left), and V40/V,0=0.7 (right).

Tsvankin (1994)), indicate that ¢ and § control basically the P-wave propagation mode;
therefore, we should also expect that these two parameters influence the migration results
obtained via explicit filtering. Thomsen (1986) indicated that 6 and € control the near-
vertical and near-horizontal propagation in the P-mode, respectively. Alkhalifah and
Larner (1994) also showed that the migration error produced when anisotropy is ignored
is controlled mainly by ¢ and §. These results suggest that in order to reduce migration
errors in explicit filtering, we must calculate extrapolation operators for each pair of
different € and § values. If the area under study consists mainly of low-dipping reflectors
(dip less than about 30 degrees), € may not influence the migration results, so we could
take, €=0.0, for example, to calculate the filters. For intermediate and high propagation
angles, knowledge of € and 6 would be essential to calculate accurate explicit filters.

Figure 4.12 shows the vertical (2-component) zero-offset section for the model of
Figure 4.8a obtained using the same finite-differences modeling program used in Figure
4.8b. Figure 4.13 shows detail of depth migration obtained using P-wave minimax filters
calculated for a VTI medium with the correct Thomsen parameters (a), and assuming an
isotropic medium (b). Ignoring anisotropy has produced undermigration. of the dipping
reflector in Figure 4.13b.

The results in this section indicate that, for the P-mode, we must calculate explicit
filters for each pair of € and § values. Vi can be set as a constant during the calculation
and Vyo variations are taken into account by calculating a table of operators for different
values of normalized frequency f Az[Vy. On the other hand, explicit filters for the SV-
mode must be calculated for each value of Just one parameter, 0. Again, Vo variations are
considered by calculating a table of operators. Thus, during the filter calculation, only
two parameters are needed for the P-mode and Jjust one for the SV-mode. Nevertheless,
to do the depth migration, the values of Vpo must be known for the P-mode in order to
calculate the normalized frequency fAz/V,, and thus, select the correct explicit operator
to use at each depth step. A similar stament holds for the S V-mode, with V,, being the
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FIG. 4.10. Migration impulse responses for the SV mode for constant ¢ = 1.6, and for
Vo = 1.0 km/s.

value needed to calculate fAz/Vi,.

Thomsen (1986) pointed out that § values can be obtained from P-wave surface
seismic velocity analysis and well information (well-logs, VSP, or check-shot) through
the relation

Vamo = VpOV 1+ 26, (42)

where Vg is the vertical velocity obtained from the well information. Alkhalifah and
Tsvankin (1994) showed that if the vertical velocity is known, € and é can be found
by inverting two P-wave NMO velocities corresponding to a horizontal and a dipping
reflector. For the SV-mode, Thomsen (1986) also find

Vnmo = VeoV1 + 20. (4.3)

Thus, we see from this equation that if Vio information is available from a shear wave
check-shot, or from a multicomponent VSP, the values of o can be estimated.

4.3 Influence of anisotropy on filter accuracy

In Section 4.2 we studied the anisotropy parameters needed to calculate explicit
operators for the P- and SV-mode. Also, in Chapter 3 we saw that the accuracy of the
explicit filters changes from one TI medium to other, and also, for a given TI medium,
the accuracy can change with the propagation mode. In this section, I study how the
anisotropy, represented by Thomsen parameters, influences the accuracy of the calculated
explicit filters. However, even in the isotropic case, Holberg (1888), Hale (1991a), and
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F1G. 4.11. Depth-migration of synthetic section in Figure 4.8b obtained using minimax
SV filters with the same Vg, €, and § in Figure 4.8b, but with the true V,q /Vpo=0.49
(left), and Vio/V0=0.7 (right).

Soubaras (1992) have shown that explicit filters have a limited accuracy, so I begin this
section describing the accuracy problem for isotropic media in order to get the tools
needed to describe the same problem in transversely isotropic media.

4.3.1 Filter accuracy in isotropic media

As Hale (1991a) has pointed out for isotropic media, stability is achieved only at
the expense of accuracy, measurable in the ability to position steep reflectors correctly.

Let us consider first the accuracy problem in isotropic media. Figure 4.14 shows
the theoretical (gray curve) and the actual (black curve) amplitude responses for an
isotropic depth-extrapolation operator, as a function of normalized wavenumber (cycles).
The minimax method was used to calculate the filter coefficients. The number of filter
coefficients was N = 39, Az/Az = 1, the normalized frequency (fAz/Vy) was equal
to 0.25 cycles, and the maximum design angle used in the minimax method was 8,,,, =
70 degrees. Figure 4.15 shows the amplitude (left) and phase (right) error of the filter
in Figure 4.14, as a function of propagation angle. As pointed out by Hale (1991a),
amplitude and phase errors less than 0.001 and = /1000 ~ 0.003, respectively, guarantee
the application of this filter for at least 1000 steps of downward-extrapolation without a
significant accumulated error in amplitude or phase. If we were to increase ,,,, beyond
the 70 degrees used in Figure 4.14, the filter could become unstable, with amplitude
values greater than unity in the evanescent region, or it could become inaccurate, with
amplitude and phase errors in Figure 4.15 greater than 0.001 and 7/1000, respectively.

Now, let us assume for a while that we do not care about stability in the evanes-
cent region, so we can use all the degrees of freedom in the filter to get accuracy in the
propagation region. Naturally, this kind of filter cannot be used in practice because it
will amplify random noise components that may exist in the evanescent region. However,
this test can help us determine the maximum angle that could possibly be accurately
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F1G. 4.12. Zero-offset z-component synthetic section for the homogeneous model of
Figure 4.8a.

Midpoint (km) Midpoint (km)

F1G. 4.13. Depth-migration of synthetic section in Figure 4.12 obtained using minimax ;
P filters with the same values of V3 and Vg as in Figure 4.8b, but with the true ¢=0.255 J
and 6=-0.05 (a), and with the wrong values of €¢=0.0 and §=0.0 (b).
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FIG. 4.14. Theoretical (gray curve) and actual (black curve) amplitude response for an
isotropic DEO. The filter was calculated using the minimax method with Omaz = 70
degrees. The boundary between the propagation and evanescent region is at 0.25 cycles.

propagated for a given number of filter coefficients. Figure 4.16 shows the theoretical

gray curve) and actual (black curve) amplitude response of the same filter as in Fig-
ure 4.14, but now using a maximum design angle 6., = 85 degrees, and without any
amplitude constraints in the evanescent region (note the huge amplitude values for some
wavenumbers greater than 0.25 cycles). Figure 4.17 shows the amplitude (left) and phase
(right) error of the filter in Figure 4.16, but now as a function of propagation angle. Note
that even when all the degrees of freedom in the filter are used to get accuracy in the
propagation region, the amplitude and phase errors in Figure 4.17 are large relative to
those of Figure 4.15 (because of the large value of 8,,,, used here). It seems that there
are not enough degrees of freedom in a filter of N = 39 coefficients to propagate a maxi-
mum angle of 85 degrees, even when we have no amplitude constraints in the evanescent
region.

In the analysis of Figure 4.14 through Figure 4.16, we studied the amplitude and
phase response of the filters. The depth-extrapolation filters are actually composed of
two filters; one filter propagates the real part of the DEO [equation (3.1)}], and another
propagates the imaginary part. Let us take a look at the amplitude error of the real-
and imaginary-part filters of Figure 4.16. Figure 4.18 shows the amplitude error of the
filters calculated to match the real (left) and imaginary (right) part of the downward-
continuation operator in Figure 4.16. Interestingly, the amplitude error for the imaginary-
part filter is about 20 times larger than that of the real-part filter. For practical purposes,
therefore, all the amplitude error in Figure 4.17 is produced by the error in the imaginary
part. Thus, we see from Figure 4.18 that, in reality, we have enough degrees of freedom
to fit the real part of the operator. The fit to the Imaginary part, however, is poor;
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Fic. 4.15. Amplitude (left) and phase (right) error as a function of propagation angle
for the filter in Figure 4.14.

the behavior of the imaginary-part operator is such that it cannot be well fit with a
finite-length filter.

Calculating depth-extrapolation filters is basically equivalent to finding a convergent
Fourier series expansion for the DEO (Holberg, 1988). Different treatments can be used
to attenuate the evanescent energy and to improve the convergence of the Fourier series
expansion (Holberg, 1988; Hale, 1991a), but, in general, the fit to the DEO in the
propagation region is made by a Fourier series expansion. The convergence properties
of a Fourier series expansion for any function depend on the degree of continuity of the
function and its derivatives. Thus, roughly speaking, if the function and its first p—1
derivatives are bounded and continuous, the coefficients in the Fourier’s series for the
function will be less in absolute value than L/N?*!, where L is some positive number
independent of N, and N is the number of terms used in the expansion (Tolstov, 1976).

Figure 4.19 shows the theoretical amplitude response for the real (left) and imagi-
nary (right) parts of the same theoretical operator as in Figure 4.16. In the propagation
region (wavenumbers less than 0.25 cycles), both operators are continuous. Figure 4.20
shows the derivative of the real (left) and imaginary (right) parts of the DEO in Fig-
ure 4.19. The real-part derivative has a discontinuity at the threshold wavenumber that
separates the propagation and evanescent regions, and is unbounded in the evanescent
region (limy_,o.25+ Re(k) = —oo). However, in the propagation region (wavenumbers be-
tween 0 and 0.25 cycles), the real-part derivative is continuous and bounded (at least,
p = 2); therefore, the coefficients in the Fourier series for the real-part operator will be
smaller in absolute value than L/N®. For this analysis, we do not care so much about
the convergence of the Fourier series in the evanescent region. For that region, we require
only that amplitude values be less than unity. The imaginary-part derivative also has a
discontinuity at the threshold wavenumber, but this time, the imaginary part derivative
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F1G. 4.16. Theoretical (gray curve) and filter (black curve) amplitude response for an
isotropic DEQ. The filter was calculated using the minimax method with Omar = 85
degrees, and without amplitude constraints in the evanescent region.

is unbounded in the propagation region (limy_g.95- I m(k) = —o0); therefore, the coeffi-
cients in the Fourier’s series for the imaginary part operator will be less in absolute value
than only L/N2. This suggests an explanation for the different convergence properties
and errors for the real- and imaginary-part filters.

4.3.2 Filter accuracy in TI media

For the P mode, we showed above that ¢ and § mainly determine the behavior of
the migration impulse responses. Figure 4.21 shows the 1000-step phase-error threshold
for VTI media with € = 0, § = -0.2 (black curve); and € = 0, § = 0.2 (gray curve),
using a 39-coefficient filter based on the LS method. The error thresholds are shown as
a function of normalized frequency (fAz/ Vz0) and propagation angle. As before, the
1000-step phase-error contour corresponds to an error of 7/1000 radians. Figure 4.21
exemplifies that for a given value of ¢, the accuracy of the filters increases as the value
of 6 increases. Thus, the filters for € = 0; § = -0.2, and é = 0.2, will propagate waves
at about 65 and 75 degrees, respectively, with one-half cycle of phase error after 1000
steps of downward extrapolation. Almost 10 degrees of reflector dip has been gained in
changing § from -0.2 to 0.2. Interestingly, the result for § = 0.2 is more accurate than
that for isotropic media (¢ = 6 =0). A similar conclusion holds for accuracy based on
amplitude.

Figure 4.22 again shows phase-error thresholds for VTI media by the LS method,
but now using € = 0.3, again with 6§ = -0.2 (black curve), and § = 0.2 (gray curve). As I
find for all choices of € and §, accuracy still increases for increasing values of §; however,
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FIG. 4.17. Amplitude (left) and phase (right) error as a function of propagation angle
for the filter in Figure 4.16.

comparing with the results in Figure 4.21, we see a decrease in accuracy for the larger
value of €. Figures 4.21 and 4.22 thus show that almost 10 degrees of reflector dip has
been lost when we change ¢ from 0.0 to 0.3. The results in Figures 4.21 and 4.22 are
representative of results of tests with all other choices for € and 6 over the practical ranges
0<e<0.3and -02<6<L0.2.

Following the same reasoning employed in the isotropic case, we try to explain
the results in Figures 4.21 and 4.22, by examining the behavior of the imaginary-part
derivative of the depth-extrapolation operator for VTI media. Figure 4.23 shows this
derivative, now as a function of dip angle in the propagation region, for values of e =
0.0 (left) and € = 0.3 (right). In both plots, the & values used are 6 = -0.2, 0.0, and 0.2.
All these derivatives are unbounded (they go to minus infinity as the propagation angle
approaches 90 degrees). Both plots show only the amplitude range -10 to 0. Figure 4.23
shows that for a constant value of €, the rate of decay of these derivatives changes with
the value of §. Increasing the value of § slows the decay rate; that is, the curves go to
minus infinity more slowly than do those for lower values of 6. The slower the decay rate
of the imaginary-part derivative, the smaller the magnitude of this derivative for high
propagation angles; therefore, the larger the propagation angle that can be accurately
handled with a finite-length filter. I

Let’s see if we can understand why accuracy has this dependence on the values of :'
¢ and §. Figure 4.24 shows theoretical migration impulse responses for the P-mode and
for constant values of V,0=2.0 km/s and V4=1.0 km/s, for three different TI media,
corresponding to cases where we expect relative poor, medium, and good accuracy for
the explicit filters. Thus, the solid black curve corresponds to a medium with €=0.3,
and §=-0.2 (poor relative accuracy); the gray curve corresponds to an isotropic medium
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FIG. 4.19. Theoretical amplitude response of the real (left) and imaginary (right) part

of an isotropic DEQ.
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FI1G. 4.20. Theoretical amplitude response for the derivative of the real (left) and
imaginary (right) part of the same DEO as in Figure 4.19.

(€=0.0 and 6=0.0) (medium relative accuracy); and the dashed curve corresponds to a
medium with €=0.0, and 6=0.3 (good relative accuracy). The solid black curve shows
that the reflector dip increases more slowly with midpoint along the impulse response
than do the dips for the other two curves.

A fixed group angle in Figure 4.24 corresponds to different maximum propagation
dips in each one of these impulse responses. Figure 4.25 shows the maximum dips that
can be seen in these three impulse responses for a group angle of 70 degrees. This choice of
group angle is taken from the maximum angle that can be propagated using an isotropic
filter of N=39 coeficients. I show only half of each of the impulse responses to emphasize
the differences between the maximum dips propagated. The slopes of segments along the
impulses responses in Figure 4.25 correspond to various dips in the subsurface. Therefore,
in the poor-accuracy case (solid line), a relatively gentle dip (about 48 degrees) is seen in
the impulse response at a group angle of 70 degrees. For isotropic media, the group angle
is equal to the phase angle so the maximum dip obtained here is equal to 70 degrees.
However, a steeper dip (about 76 degrees) is seen at group angle of 70 degrees in the
curve for best accuracy (dashed curve).

For the SV mode, I use the minimax method to calculate depth-extrapolation filters.
We saw in Chapter 3 that the minimax method can better handle triplications in the SV
mode than does the least-squares method; both methods have similar accuracy otherwise.
I also showed above that the ¢ parameter mainly determines the behavior of the SV
migration impulse response. Figure 4.26 shows phase-error thresholds for VTI media
with 0 = 1.6 (Vo = 4.0 km/s, Voo = 2.0 km/s, e = 0.3, and é = -0.1),and 0 = 0.4 (Vpo =
4.0 km/s, Vyo = 2.0 km/s, € = 0.3, and é = 0.2), using a 39-coefficient filter based on the
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F1G. 4.21. Phase-error thresholds for the P mode in VTI media and for constant € = 0.0,
6 = -0.2 (black curve) and § = 0.2 (gray curve). The phase-error contours correspond to
7 /1000 radians. After 1000 steps of depth-extrapolation, the accumulated phase error in
the region beneath either contour will be one-half wavelength (7 radians).

minimax method, and for a maximum design angle of 70 degrees. The two filters yield
similar accuracy. A similar result (not shown here) was obtained for a filter calculated
for o = -0.2.

Figure 4.27 shows a detail of theoretical SV migration impulse responses for the same
VTI media used in Figure 4.26 and for another VTI medium with o=-0.2 (Vpo=2.86km/s,
Ve0=2.0km/s, e=0.1, §=0.2). As opposed to the P-wave mode, where for a constant group
angle the migration impulse responses showed different maximum dips, Figure 4.27 shows
that for different values of o, and for a constant group angle of 70 degrees, the impulse
responses show basically the same maximum dips.

The maximum dip propagated with accuracy (about 70 degrees) by Holberg (1988)
and Soubaras (1992) for isotropic media, combined with the results for the accuracy of
the operators in the P-wave mode in Figures 4.21 through 4.23, and also the results of
Figure 4.25, suggest that the depth-extrapolation filters can propagate with accuracy
up to a maximum group angle. For the case of filters of length N=39 coefficients, that
maximum group angle is about 70 degrees. For isotropic media, the group angle is equal
to the phase angle, so the maximum dip that can be propagated with accuracy will also
be 70 degrees. In TI media, the anisotropy in the media changes the relation between
phase angle and group angle. Depending on the anisotropy values for a given medium,
different phase angles can correspond to a group angle of 70 degrees. Therefore, details
of the anisotropy will determine the maximum dip of structures in the subsurface that
can be migrated with accuracy.

Let us try to test this result for SV-wave filters. Figures 4.26 and 4.27 suggest that
explicit filters for the SV-wave mode can propagate up to a maximum dip angle of 70
degrees. In Figure 4.28, I show SV migration impulse responses for the same VTI media
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FIG. 4.22. Phase-error thresholds for the P mode in VTI media and for constant ¢ =
0.3, § = -0.2 (black curve) and § = 0.2 (gray curve). For the region beneath either
contour level, the phase error would exceed a half-cycle after 1000-steps of downward
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FIG. 4.23. Derivative of the imaginary part of the DEO for the P mode in V1 media
and for different values of € and 4.
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F1G. 4.24. P-wave migration impulse responses for constant values Voo = 2km/s, V,o=1.0
km/s. Solid black curve, € = 0.3, § = -0.2. Gray curve, €=0.0, §=0.0. Dashed curve,
€=0.0, §=0.3.

used in Figure 4.27, using explicit operators based on the minimax method. The depth-
extrapolation filters calculated in Figure 4.26, and another filter calculated for o = -0.2,
were used to calculate the migration impulse responses of Figure 4.28. The same w — z
domain depth-migration program used by Hale ( 1991a) for isotropic media was used here
to calculate these anisotropic migration impulse responses. All that has been changed
in the migration program is the table of depth-extrapolators. Figure 4.28 confirms the
result obtained in Figure 4.27. It shows that the three migration impulse responses have
similar accuracy (up to about 70 degrees) even when the shapes of the impulse response
differ considerably from one another.

Following the above reasoning, we can also estimate the accuracy of explicit filters
in TI media with a non-vertical axis of symmetry. Figure 4.29 shows the same SV
theoretical migration impulse responses shown in Figure 3.35, but now, the responses
are displayed up to only a maximum group angle of 70 degrees. This group angle is the
maximum group angle expected to propagate with accuracy using an explicit filter of
N=39 coefficients. Therefore, Figure 4.29 shows the shape of the ideal impulse response
that would be obtained using explicit filters of N=39 coefficients. We note 2, good
agreement in comparing this figure with the impulse response calculated for o=1.6 in
Figure 4.28, and the impulse response calculated in Figure 3.34.
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F1G. 4.25. Detail of the P-wave migration impulse responses of Figure 4.24 showing
maximum dips observed for a group angle of 70 degrees. Solid black curve, € = 0.3, 6 =
-0.2. Gray curve, ¢=0.0, 6=0.0. Dashed curve, ¢=0.0, §=0.3.
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FIG. 4.26. Phase-error thresholds for the SV mode in VTI media and for o = 1.6 (Vio
4.0 km/s, Vo = 2.0 km/s, ¢ = 0.3, and § = -0.1), and 0 = 0.4 (Vo = 4.0 km/s, Vyo =
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F1G. 4.27. Detail of the SV-wave migration impulse responses for VTI media with ¢

values of -0.2, 0.4, and 1.6 showing maximum dips observed for a group angle of 70
degrees.
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F1G. 4.28. Impulse response of migration via N=39-coefficient explicit extrapolators
obtained using the minimax method, for the SV propagation mode in VTI media with
o = 1.6, 0.4, and -0.2.
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F1G. 4.29. SV-wave migration impulse responses for VTI media with o=1.6 and for

vertical axis of symmetry and a tilted axis of -40 degrees. Only the dips observed for a
group angle of 70 degrees are shown.
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Chapter 5

APPLICATIONS OF DEPTH-EXTRAPOLATION FILTERS FOR TI1
MEDIA

5.1 Introduction

In Section 5.2 of this chapter, I use the MTS method to obtain depth migration sec-
tions for a field data set. Using an anisotropic dip moveout (DMO) algorithm (Anderson,
et al., 1994), I obtain a zero-offset section with variable velocity and 7 = (e —6)/(1 +29)
by “painting” or interpolating multiple constant-7, zero-offset panels. The MTS filters
were used because reflector dips in the data set do not exceed about 45 degrees; also,
the values of the anisotropic constants obtained in the anisotropic DMO processing were
relatively small.

In Section 5.3, following the same approach that Hale (1991b) used for isotropic
media, I obtain 3D depth-migration impulse response for the P-mode in VTI media
by using McClellan transformation and VTI depth-extrapolation filters for 2D depth
migration. Unfortunately, for TI media with a non-vertical axis of symmetry, the circular
symmetry with respect to spatial wavenumbers of the 3D depth-extrapolation operator
is lost, so the McClellan transformation cannot be applied.

In Section 5.4, I describe an implementation of “pipelining” of 2D and 3D depth
migration via explicit filtering using the Message Passing Virtual System (PVM). Proto-
type versions of 2D and 3D depth migration were implemented on a network of 25 IBM'’s
RISC/6000 workstations, model 520 and 530.

Finally, in Section 5.5, I use VTI depth-extrapolation filters for 2D poststack depth-
migration to do depth extrapolation of synthetic common midpoint-gather data in TI
media. The results show that anisotropic filters produce a better focussing of the energy
than that obtained using isotropic filters.

5.2 Application to field data

In this section, I apply 2D depth-migration to field data acquired in offshore Cabinda,
a small detached enclave of Angola, courtesy of Chevron Oil Field Research.

Figure 5.1 shows an interpretation of a conventional time-migrated section in the
area. The different tectonic movements in the area are identified in an interpretation
made by Tagir Galikeev at Colorado School of Mines. Two different parts of the section,
with different seismic data quality, can be defined. The upper part, of good seismic
data quality, corresponds to postsalt deposition. In Figure 5.1, the top of SynRift II
corresponds to the top of salt. The lower part (poor seismic data quality) corresponds
to presalt structures. Approximately 25 percent of the oil in Cabinda has been found
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within presalt reservoirs. Of importance in the figure is the sedimentation of a shaly
clastic sequence during a period of regional subsidence. This unit thickens rapidly to the
left of Figure 5.1 and is faulted to the right. The faulting could be a result of both salt
intrusion, most possibly high-pressure shale movement. Anisotropy estimates have been
made by Chevron in the area from VSP and well-logging data; however, these estimations
were not available.

‘The main oil target in this area are the presalt structures. Depth migration is
an appropriate tool for imaging the presalt structures, as well as other structures in
the section. However, as discussed in Chapter 4, in the presence of anisotropy, depth
migration requires an estimate for the vertical velocity Vg, as well as for the anisotropic
constants € and 6. Thus, the first problem to address here is to get an estimate of the
vertical velocity field and these anisotropic constants.

As pointed out in Chapter 4, Alkhalifah and Tsvankin (1994) showed that in or-
der to perform all major seismic data time-processing steps including DMO, prestack,
and poststack time migration in TI media, we need to know only the zero-dip NMO
velocity Vivao(0) and the anisotropic parameter 7 = (€ —6)/(1 +26). Anderson et
al., (1994), devised a Fowler-type DMO algorithm for transversely isotropic media using
the analytic expression for normal-moveout velocity given by Tsvankin (1995). Using
this DMO algorithm, Anderson et al., (1994) obtain the values of Vwumo(0) and 7 by
inspecting zero-offset panels for different pairs of constant values of the two parameters.
In order to simplify this procedure, they restrict the search in the anisotropic Fowler
DMO algorithm to a single parameter 7 by first obtaining the NMO velocity for hori-
zontal reflectors Vya0(0) from conventional velocity analysis. Then, a final zero-offset
section with variable velocity and 7 can be “painted” or interpolated from a number of
constant-n DMO /stack panels.

Figure 5.2 shows the DMO-plus-stack section calculated for n=0.0 (isotropic), and
Figure 5.3 shows the DMO-plus-stack section for the time-variant 7 values obtained by
the anisotropic Fowler DMO analysis. The estimated n values increase linearly from
0.0 in the isotropic water layer up to 0.20 at about 3 s. The arrows in both figures
point to reflections produced by a major fault that has been recognized in the area. The
area inside the rectangles in both figures is magnified and shown in Figures 5.4 and 5.5.
Figure 5.5 shows a somewhat stronger fault reflection than does Figure 5.4. Mapping
of this fault is important because this fault can act as a seal due to salt intrusion. To
better see the imaging of this fault by migration, I apply a dip filter over both sections
to strengthen events with slopes near that of the fault reflections in F igures 5.2 and 5.3.
The approximately slope of the fault-diffractions is -0.67 s/km. The dip filter applied
multiplies the amplitude of the slopes between -0.8 and -0.5 s/km by 2.5, while it simply
passes all the slopes less than -1.0 s/km and greater than -0.4 s/km. Figures 5.6 and
5.7 show the same magnified area of Figures 5.4 and 5.5 after the dip filtering. The
anisotropic DMO algorithm produces better delineation of the fault reflection than does
its isotropic counterpart in Figure 5.6.

As opposed to time migration in TI media, where only Vyo(0) and 7 are needed,
depth migration requires the individual values of € and § to produce the correct location
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F1G. 5.1. Seismic interpretation of the line in study showing the different tectonic
movement in the area.
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F16. 5.2. DMO-plus-stack section obtained assuming an isotropic medium.
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F1G. 5.3. DMO-plus-stack section obtained assuming an anisotropic medium with 7
variable in time.
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F1G. 5.4. Detail of the isotropic DMO-plus-stack section in Figure 5.2.

Midpoint (km)

F1G. 3.5. Detail of the TI DMO-plus-stack section in Figure 5.3.
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F1G. 5.6. Detail of the same isotropic DMO-plus-stack section as in Figure 5.2 but with
a dip filter applied to strengthen the sloping reflections.

Midpoint (km)

F1G. 5.7. Detail of the same TI DMO-plus-stack section as in Figure 5.3 but with a dip
filter applied to strength the sloping reflections.
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of reflectors in depth. Given a constant value of 7, many different combinations of ¢ and
& can produce the same 7 value. Alkhalifah and Tsvankin (1994) have shown that for a
fixed Vv mo(0) and 7, all possible combinations of € and § would produce the same lateral
displacement of dipping reflectors in time migration. In depth migration, this same result
holds because lateral displacements in time and depth migration are the same. However,
in depth migration, and where vertical velocities V, are obtained from NMO velocities,
Vo has to be recalculated from the relation Vy = Vyao(0)/v/1+ 26 each time that a
new value of § is used. Changes in V,o would produce vertical displacements of horizontal
and dipping reflectors, but the lateral displacement of dipping reflectors would be about
the same if we always keep 7 constant.

If, instead, Vi values are obtained from well-logging or VSP data, the depth-
migration solution is unique because we can calculate é from the relation Vo = Vyy0(0)/
V1 + 26, and € from the 7 values obtained during the seismic data processing in time
using the approach of either Anderson et al., (1994) or Alkhalifah and Tsvankin (1994).

For simplicity, and due to the many different possible combinations of ¢ and §
that can produce a constant value of 7, here I calculated only four different depth-
migration sections using explicit operators. One section was calculated assuming an
isotropic medium for the depth-migration step (the DMO was the one in Figure 5.5,
which took anisotropy into account). The other two sections were calculated for the
same constant value of 7, equal to the average value obtained from the anisotropic-DMO
analysis (n=0.1), but for two different pairs of € and &: €=0.1 and §=0.0, and €=0.0
and 6=-0.083. In addition to producing the same 7 value, these values of ¢ and § were
chosen to show two important situations: First, when §=0.0, the Vo velocity field de-
rived from the values of Viyr0(0) is the same for isotropic and TI media, so differences
in migration results between the isotropic and TI media would be due just to the influ-
ence of anisotropy in the depth-migration step. Second, when § # 0.0, the velocity Vo
field obtained from Vauo(0) values for TI media differs from that obtained for isotropic
media, producing a relative displacement of the imaged reflectors in depth with respect
to the depths obtained in the isotropic migrated section. In both situations, the lateral
displacement of the dipping reflectors are the same because the same value of 1 is used
in both depth migrations.

Also, because the maximum dip for the fault is about 45 degrees, and the anisotropic
values obtained from the DMO analysis for 7 are small, MTS filters can be used with
confidence; they will produce better amplitude estimates than will the LS and minimax
filters.

Figure 5.8 shows the depth-migration output obtained using isotropic MTS filters
over the stack section of Figure 3.5 obtained using the TI DMO. Because the sedimentary
section is gently dipping and velocities are believed to be controlled by depth, the interval
velocities used in the depth-migration process were obtained from the stacking velocities
using the Dix equation. Basically, Figure 5.8 shows the result of ignoring anisotropy just
in the depth-migration process; a relatively good imaging of the fault has been obtained.

For comparision, Figure 5.9 shows the depth migration obtained using VTI depth
extrapolation filters calculated for € = 0.1 and é = 0.0 on the stack section of Figure 5.5.
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F1G. 5.8. Isotropic depth migration obtained using explicit extrapolators for the TI
DMO-plus-stack section in Figure 5.5

F1G. 5.9. Anisotropic depth migration obtained using explicit extrapolators for the TI
DMO-plus-stack section in Figure 5.5, for ¢=0.1 and §=0.0
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FI1G. 5.10. Detail of isotropic depth migration in Figure 5.8 obtained for the TI
DMO-plus-stack section in Figure 5.5.
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F1G. 5.11. Detail of anisotropic depth migration in Figure 5.9 obtained for the TI
DMO-plus-stack section in Figure 5.5.
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Because 6=0.0, and the V}, velocity field is obtained from NMO velocities, the Vo values
used in Figure 5.9 are the same as those used in Figure 5.8, so the differences between
these two sections are due solely to ignoring anisotropy during the depth-migration step,
but not during the DMO process. Figure 5.9 shows an imaging of the fault that is
similar to that obtained in Figure 5.8, and Figures 5.10 and 5.11 give a close view of the
fault area imaged in Figures 5.8 and 5.9, respectively. The closeup images differ almost
inconsequentially. The fault, which has about 50-degree dip, is imaged just slightly
further to the right by the TI migration. Here, while use of anisotropy in the DMO
process was important to getting a good image of the fault, upon comparing Figures 5.10
and 5.11 we conclude that the influence of anisotropy in the depth-migration process
of these data was negligible. These results agree with numerical results obtained by
Alkhalifah and Larner (1994), which predict small lateral position errors for dip less than
50 degrees (for low values of ¢ and §, that is € < 0.1 and § < 0.1) when data from TI
media are migrated with isotropic migration algorithms.

Again, while anisotropy is not an important factor in the depth migration process,
DMO is. To see this, Figure 5.12 shows the depth-migration output obtained using the
same isotropic MTS filters as in Figure 5.8, but this time, the input stack section is
that of Figure 5.4, calculated using the isotropic DMO algorithm. This would be the
result obtained in normal migration practice today, which completely ignores anisotropy.
Figure 5.13 shows the closeup of the depth migration in Figure 5.12. The imaged fault is
much weaker in this figure than in either Figure 5.9 or 5.11. Clearly, the use of anisotropy
in the DMO process yields better delineation of the fault.

To see the influence of § on the results of depth migration, Figures 5.14 and 5.15
show a depth-migration section and a detail of this section, respectively, obtained using
explicit VTI filters over the TI DMO section in Figure 5.5 for ¢=0.0 and 6=-0.083. For
this example, because § # 0, the Vo velocity field must be recalculated from the NMO
velocities; specifically, because § < 0, the new Vo velocity values will be greater than
those used in Figures 5.8 and 5.9 by almost 10 percent. As a result, the horizontal and
dipping reflectors are imaged deeper in Figure 5.14 than in Figure 5.8. However, the
dipping reflectors are at the same lateral position, independent of the choice of € and §.

In summary, the results of this section show that when only seismic surface infor-
mation is available, the use of Anderson et al., (1994) anisotropic DMO, as opposed to
conventional isotropic DMO, can help not only to estimate anisotropic parameters (7)
for time-related seismic data processing, but also to obtain a stack section with better
definition of dipping events. For the low estimated values of 5, and for the range of
dips (0-45 degrees) present in the data, the use of the anisotropic DMO algorithm plus
isotropic depth migration was enough to get a good imaging of the fault. The influence
of anisotropy on just the imaging process in depth migration for this data is negligible.
However, the influence of anisotropy in the DMO process was appreciable. Even when
surface seismic information was not enough to estimate the complete set of parameters
needed for depth migration, honoring 7 in depth migration guarantees at least the correct
lateral position of dipping events in the final depth-migrated section. Lack of informa-
tion about é, however, leaves uncertainty in the imaged depth of flat and dipping events.

112



Midpoint (kmn)
0 1 2 3 4 5 6

Depth (km)
H W N - O

F1G. 5.12. Isotropic depth migration obtained using explicit extrapolators for the
isotropic DMO-plus-stack section in Figure 5.4.
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F1G. 5.13. Detail of isotropic depth migration in Figure 5.12 obtained for the isotropic
DMO-plus-stack section in Figure 5.4.
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FI1G. 5.14. Anisotropic depth migration obtained using explicit extrapolators for the TI
DMO-plus-stack section in Figure 5.5, and for €=0.0 and §=-0.083
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F1G. 5.15. Detail of the anisotropic depth migration in Figure 5.14 obtained applied to
the TI DMO-plus-stack section in Figure 5.5.
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These conclusions, which have been understood by Alkhalifah and Tsvankin (1994), are
confirmed with application of the MTS operators here.

5.3 3D depth migration via McClellan transformations

Three-dimensional (3D) migration in isotropic media requires a downward-extrapolation
operator (DEO) given by (Hale, 1991b) —

D [k,w] = exp {2%2— [(ﬂé{)z - kz] %} , (6.1)

where & is given now by k = /kZ+kZ, with k. and k, denoting inline and crossline
wavenumbers, respectively, with azimuth ¢ (angle of the plane-wave with respect to the z-
axis) given by tan ¢ = ky/k,. Both wavenumbers (k, and k,) are normalized by the inline
sampling interval Az, which will be assumed to be equal to the crossline sampling interval
Ay. This assumption (Az = Ay) simplifies the application of McClellan transformation
to 3D depth migration. However, as pointed out by Hale (1991b), one may resample
the seismic wavefield to satisfy this assumption or use McClellan transformations that
account for unequal sampling intervals (Merserau et al., 1976).

For transversely isotropic media, the 3D DEO can also be written in the form of
equation (5.1), but now considering the functional dependence of the phase velocity on

propagation angle 8
Az [ [ waz \? '
S .-——— ——————swne—— —— 2 =
Dlk,w] =expqt ~ {(V;,h(ﬁ)) k } . (5.2)

For 3D depth migration in isotropic media, Hale (1991b) shows that depth extrapolation
can be performed by using the same filter coefficients used for isotropic 2D depth migra-
tion. Specifically, McClellan filters transform any one-dimensional filter (as those used
in 2D depth migration) into an approximately circularly symmetrical two-dimensional
filter. The same reasoning followed by Hale (1991b) can be applied for 3D depth mi-
gration in TI media: we can use the filter coefficients for 2D depth migration in TI
media obtained above, and the same McClellan filters used by Hale (1991b) to convert
these one-dimensional filters into approximately circularly symmetrical two-dimensional
filters. For TI media with a tilted axis of symmetry, however, the spatial wavenumbers
in the inline and crossline directions are not symmetrically distributed about zero dip,
ie., kz(0) # k.(—8), and likewise for k,. Thus, for tilted symmetry axis, the symmetry

. in the two-dimensional filters is lost, so a direct application of McClellan transformations
is not possible.

Figure 5.16 shows a 3D impulse response for a homogeneous TI media with a vertical
axis of symmetry and Thomsen parameters of Vyo= 2 km/s, Vo= 1 km/s, €=0.0, and
6=-0.3. The 3D impulse response was obtained by using depth-extrapolation filters
for 2D depth migration calculated by the MTS method, and the improved McClellan
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F1G. 5.16. 3D migration impulse response for the P propagation mode and for Thomsen
parameters, V;0=2.0 km/s, V,0=1.0 km/s, ¢=0.0, and 6=-0.3.

transformation filter given by Hale (1991b). The same 3D depth-migration program
used by Hale (1991b) for isotropic media was used here to obtain the impulse response
of Figure 5.16, I needed only to change the table of 2D depth-extrapolators. In this test,
the spatial sampling intervals Az = Ay = Az = 10 m, and the time sampling interval
At = 10 ms. The input data consisted of zeros throughout, except for the input trace
located at z = y = 0.5 km, which contained a single zero-phase Ricker wavelet centered
at t = 0.75 s, with a peak-frequency of 20 Hz.

To get a closer look at the results, we can look at the slice of this cube for a given
constant depth, as well as inline and crossline sections through this cube. Figure 5.17
shows a slice of the 3D depth-migrated cube of Figure 5.16 for the depth z=0.5 km.
The dotted curve in the figure corresponds to the theoretical position calculated using
Thomsen equations for group angle and group velocity extended to 3D. To calculate the
theoretical shape of the depth-migration impulse response in 3D, consider Figure 5.18 and
note that the coordinates (zo, yo, o) on the depth-migration impulse response surface
are given by

zo(@) = Vg;d)) tosindcosp
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F1G. 5.17. Slice of the impulse response of TI 3D migration in Figure 5.16 for the depth
2=0.5 km. The dotted line is the theoretical position of the impulse response calculated
using equation (5.1).

Yo(¢) = V;éq&) tosin gsin ¢

Vs(é)
2

where ?; is the time of the impulse on the input 3D zero-offset section, and ¢ is the
azimuth with respect to the z-axis. For a constant group angle ¢, a parametric plot of
Zo and yo as a function of the azimuth angle ¢ in equation (5.3) will produce a circle.
zo(4) in equation (5.3) is constant only if ¢ is constant. To calculate a theoretical depth
slice using equation (5.3), we need only fix the depth of the impulse response z, and
let the azimuth ¢ change from 0 to 360 degrees. Thus, equation (5.3) is evaluated for a
constant group angle ¢, so the inline o and crossline g positions in the impulse response
change with azimuth ¢ only, producing a circle for any depth-slice of the 3D migration
impulse response in a homogeneous VTI medium. In homogeneous isotropic media, the
depth-slices of 3D migration impulse response are also circles. Figure 5.17 shows a good
agreement between the theoretical position of the impulse response and the slice obtained
from the migrated cube of Figure 5.16.

To further check the impulse response in Figure 5.16, Figure 5.19 shows a cross-
section of the migrated cube in Figure 5.16 for the crossline coordinate y=0.5 km. Ide-
ally, this line would be kinematically equal to a 2D depth migration impulse response
because, in the original zero-offset section, the only non-zero trace was also located at the

z(¢) =

to cos @, (5.3)
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3D Impulse response

F1G. 5.18. Theoretical 3D depth-migration impulse response in anisotropic media. zq, yo,
and zo represent the spatial coordinates of any point on the migration impulse response.

crossline coordinate y=0.5 km. The dotted line in Figure 5.19 shows the shape of the 2D
theoretical impulse response obtained using equations (2.21). Figure 5.19 also shows a
good agreement between the theoretical 2D response and the calculated 3D cross-section.

The results here show that McClellan transformations can be used to do 3D depth
migration in transversely isotropic media with a vertical axis of symmetry. The essential
point, comparable to that of Hale (1991b) for isotropic media, is that after calculating
the explicit filters for 2D depth migration in VTI media, the same filter coefficients
are ready for use in 3D depth migration; no additional cost is entailed to calculate
new coefficients. This is one of the main advantages of explicit filtering in relation
to other depth-migration procedures such as, for example, finite differences or Gaussian
beam migration, whose extension to 3D are cumbersome and inefficient (Claerbout, 1983;
Artley, 1994). I should also pointed out that in a recent work (Soubaras, 1992), 3D
depth migration in isotropic media via explicit filtering has been accomplished using an
approach that differs from McClellan transformation. Apparently, this new approach
reduces the cost of the process and increases the accuracy of the 3D operators. However,
Soubaras’s approach is similar to the McClellan transformation approach in the sense
that both use the same filter coefficients calculated for 2D depth migration. Therefore,
Soubaras’s approach for isotropic 3D depth migration could be also implemented for TI
media using the extrapolation filters calculated here.
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F1G. 5.19. Impulse response of TI 3D migration in Figure 5.16 for the crossline coordinate
y=0.5 km. The dotted line is the position of the theoretical 2D impulse response obtained
using equation (2.21).

5.4 2D and 3D pipeline implementation of explicit extrapolation

The availability of message-passing software such as PVM (parallel virtual machine,
Beguelim et. al., 1991) makes possible an easy pipeline implementation of 2D and 3D
depth migration via explicit filtering in a network of heterogeneous machines. Using
PVM each machine in a network can be treated as an independent processor of a large
parallel or vector computer. However, because the communication between machines in
a network is not so effective as the communication between processors inside a parallel or
vector computer, the communication cost is a limiting factor in the design of applications
using PVM.

A practical implementation of the explicit depth-extrapolation process in PVM is
pipelining. In pipelining, each independent processor in the computer would calculate a
separate depth step in the migrated section for all z positions and frequencies w. However,
because calculation of the wavefield for a given depth 2 requires the previous computation
of the wavefield for z— Az, each processor has to communicate the extrapolated wavefield
value to the next processor, so how can the pipelining be implemented?

Figure 5.20 shows a schematic representation of the process. The processors are
represented along the vertical axis, and the total time of the process is represented along
the horizontal axis. P; represents the calculated wavefield P(wy,z,2). Thus, in Figure
5.20, the first processor will calculate the wavefield P(w;,z,Az) at time #;. Once the
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F1G. 5.20. Pipelining of the depth extrapolation process for the ideal case of nz
Processors.

computation is complete for the lowest frequency (w;), the first processor then sends the
calculated wavefield to the second processor. At time ¢, neglecting the communication
time between processors, the first and second processors are simultaneously calculating
P(wq,z,Az2) and P(w;,z,2Az). The same sequencing will take place with the other
processors as time increases.

The time employed by one processor in the migration process is nw * t,,, where nw
is the number of frequencies and t,, is the time needed to calculate the convolution in
z. In a conventional implementation, where we have only a single processor, the total
computer time required to calculate the explicit depth-extrapolation process would be
approximately ¢,, ¥nz * nw, where nz is the total number of depth steps. For comparison,
neglecting the communication cost, the total time employed by all the nz processors to
calculate the depth migration section is (nw -+ nz — 1) * t,,,. Thus, the ratio between the
times for the conventional implementation and for the pipeline implementation (i.e. the
speedup factor) with nz processors would be

nw * nz
nw+nz—1
A similar pipeline implementation to that described in Figure 5.20 applies for 3D depth
migration. The only difference is that P; in Figure 5.20 would represent the calculated
wavefield P(w;,z,y,2) and ¢, the computer time needed to calculate the convolution
process in z and y. Thus, equation (5.4) also gives the speedup factor for 3D depth
migration.
Let us apply equation (5.4) to estimate the computer time expected for the depth

(5.4)
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migration of the Angolan field data set. As described before, this data set consists of
some 500 CMP’s, 750 samples in time, and the depth-migration sections were calculated
for 600 steps of depth extrapolation. If we make the approximation that nw =~ nt, we
get (750 * 600)/(750 + 600 — 1) =~ 333 as the speedup factor when nz=600 processors
are used and when the communication cost is neglected. The network of IBM RS6000
used for the calculation of the depth-migration sections here, however, consists of only 25
machines. Therefore, the speedup factor is roughly approximated as (25/600) 333 = 14.
For the 2D depth migration calculations, the experimental speedup factor obtained was
about 12, impliying that the communication problem did not play an important role.

For the 3D migration impulse responses calculated in Section 5.3, nz = ny = nz =
nt=101. Equation 5.4 predicts an speedup factor of about 101 * 101/201 =~ 50, when
nz=101 processors are used. For 25 processors, the speedup factor would be roughly
(25/101) %50 = 12.5. For the 3D depth migration calculations, the experimental speedup
factor obtained was about 7, so the communication problem played an important role in
the process.

These results for 2D and 3D depth migration are preliminary and a more detail
analysis is needed to improve the depth-migration implementations in PVM. In our im-
plementation for 3D depth migration, the communication requirement is high and needs
to be improved. However, for the 2D implementation the experimental speedup factor is
close to the theoretical expected factor.

5.5 Depth extrapolation of prestack data

The depth-extrapolation filters calculated in this thesis were designed basically to
do 2D poststack depth migration. The downward-extrapolation process needed in 2D
prestack migration, however, can also be accomplished using these 2D poststack depth-
extrapolation filters.

Figure 5.21 shows a synthetic CMP gather calculated over a homogeneous TI model
with Thomsen parameters V0=2.0 km/s, V,0=1.0 km/s, ¢=0.0, and 6=0.3. The model
in depth consists of three horizontal reflectors at depths of 0.5, 1.0, and 1.5 km. The
synthetic data were generated using a ray-tracing program for TI media (Alkhalifah,
1995b). Then, I used isotropic depth-extrapolation filters obtained by the minimax
method to downward continue the receivers in the CMP data of Figure 5.21. The receivers
are extrapolated to the true depths of the horizontal reflectors using the correct value
of Vp9, and the results are shown in Figure 5.22. For display purposes, a time shift of
At = z/V, where 2 is the extrapolated depth has been applied in all the plots of Figure
5.22. Figure 35.22 basically shows the wavefield that the receivers would record if they
were buried in the subsurface at depth 2. Because we are extrapolating the receivers to
the true depth of the flat reflectors, the ideal recorded wavefield in each one of the plots
of Figure 5.22 would be a point. However, Figure 5.22 shows that the use of isotropic
extrapolators to downward continue prestack data from TI media do not produce good
focussing of the seismic energy. Moreover, the problem worsen as the depth increases.

Figure 5.23 shows the extrapolated wavefield when minimax explicit filters calculated
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F1G. 5.21. CMP gather for a homogeneous TI medium with Thomsen parameters of
Vo=2.0 km/s, V;0=1.0 km/s, ¢=0.0, and §=0.3. The original model in depth contains
three flat reflectors.

for the correct set of Thomsen parameters are used. Honoring anisotropy in the prestack
depth-extrapolation process has produced a better focussing of the seismic wavefield, even
for the deepest reflector, at 1.5 km. This result indicates the importance of considering
anisotropy in prestack migration.
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F1G. 5.22. Downward-extrapolated wavefield from CMP data of Figure 5.21 using
explicit isotropic filters.
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F1G. 5.23. Downward-extrapolated wavefield from CMP data of Figure 5.21 using
explicit anisotropic filters calculated using the correct Thomsen parameters.
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Chapter 6

CONCLUSIONS

Explicit 2D depth-extrapolation filters for TI media with vertical and tilted axis of
symmetry, and for all the propagation modes (P, SV, and SH), can be derived by gen-
eralizations of the modified Taylor series, least-squares, and minimax methods, initially
developed for isotropic media. Also, just as for isotropic media, these 2D extrapolators
for TT media with a vertical axis of symmetry can be used in the McClellan transfor-
mation (Hale, 1991b) to do 3D depth migration. However, for TI media with a tilted
axis of symmetry, a direct application of McClellan transformations is unfortunately not
possible.

For all the implemented methods, the results here show that the accuracy of the
extrapolators (for a constant filter length) is a function of the elastic properties in the
medium. For the P mode, the accuracy of the operators increases with Increasing values
of 6, and decreases for increasing values of €. In elliptical media (¢ = §), the accuracy of
the extrapolators for the P mode is relatively insensitive to the degree of anisotropy. In
the SV mode, the calculation of the operators is basically governed by the o parameter,
but the accuracy does not change much for typical values of ¢ found in sedimentary
basins. Also, because there is no phase-velocity dependence on 8 for elliptical media
in the SV mode, filters for that mode behave identically to those for isotropic media.
Explicit filters for the SH mode can be obtained using the same computer programs used
in the P mode by making V0 = Vo, and € = § = . Therefore, the accuracy in the SH
mode is identical to that obtained in the P mode for elliptical anisotropy.

The examples presented also show that, from the kinematic point of view, the least-
squares and minimax methods produce filters that accomplish accurate extrapolation for
a wider range of propagation angles than do those obtained using the modified Taylor
series method. However, from the dynamic point of view and for low propagation angles
(i.e., less than 30 degrees for most VTI media), the modified Taylor series method pro-
duces more accurate amplitudes than those produced by the least-squares and minimax
methods. These results suggest two different applications for the methods implemented
here: in areas with low dips and in order to get better amplitude estimations, modified
Taylor series filters would be preferred over least-squares and minimax filters. In contrast,
in areas with relative larger dips, least-squares and minimax filters would be preferred
over modified Taylor series filters in order to better delineate the subsurface structures.

Regarding computational cost in obtaining the filters, the minimax method is about
five times less expensive than the least-squares method and about half as costly as the
modified Taylor series method. For isotropic media, the computational cost of calculating
depth-extrapolation filters can be low in relation to the cost of doing depth migration.
Only one table of depth-extrapolation filters is needed to handle all the velocity hetero-
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geneities (Holberg, 1988), and we need calculate this table of filters only once. For TI
media, velocity heterogeneities can also be handled by calculating one table of extrapo-
lators. However, in TI media with heterogeneities in the anisotropic constants, different
filter-tables are needed for each combination of § and e for the P mode, and for ¢ in
the SV mode. Thus, the computational cost in the filter-calculation phase can be of
the same order as that of the depth-migration process itself. In this situation, relative
to the least-squares method, the minimax method can reduce considerably the cost of
calculating the depth-extrapolation filters (and therefore, the total cost of the migration
effort), without loss of accuracy. Thus, from this point of view, we would always prefer
to use the minimax method over the LS method.

The depth-extrapolation process as applied to depth migration in TI media is deter-
mined mainly by certain Thomsen’s parameters (¢ and §) for the P propagation mode,
or by a combination of these parameters, o = (Vpo/Vs0)2(€ — 8), for the SV propagation
mode. From the computational point of view, this result implies that for the P mode,
we need only calculate tables of depth-extrapolation filters for a range of normalized fre-
quencies ( fAz/Vy) and for each pair of € and § values. All these tables can be calculated
for a fixed value of the ratio Vio/Vy, €.g., Vio/Vp = 0.5. For the SV mode, tables of
depth-extrapolation filters for only a range of normalized frequencies (fAz/V,q) and for
each constant value of o would be needed.

From the seismic data-processing point of view, to do depth extrapolation for each
propagation mode (P or SV), we need to know the vertical velocities (Vo or Vi) to
calculate the corresponding normalized frequencies; therefore, we still need to obtain
information about Vg, €, and § for the P mode, and Vg, and o for the SV mode.
Alkhalifah and Tsvankin (1994), show how to estimate Thomsen’s parameters by using
anisotropic P-wave NMO velocity analysis combined with shear-wave information or well
logging data.

The accuracy of the explicit depth-extrapolation process in TI media is also governed
by Thomsen’s parameters. By first studying isotropic media, we have seen that the
accuracy problem is produced mainly by a singularity in the derivative of the imaginary-
part DEO. That singularity causes a relatively slow convergence of the Fourier series in
the imaginary-part filter. The same behavior was observed in the DEO for TI media and
for the P mode, but this time the parameters € and § determine the derivative behavior,
and therefore, the accuracy of the extrapolators. This theoretical analysis was confirmed
by studying the accuracy of depth-extrapolation filters calculated using the least-squares
method.

For the SV mode, the minimax method was used to calculate depth-extrapolation
filters for a wide range of constant values of o, and the accuracy of the extrapolators
calculated was found to be similar, with maximum propagation angles of 70 degrees, for
all values of o despite the widely differing impulse responses. The least-squares method
vields a similar accuracy, but it is unable to handle triplications in the impulse response
as well as does the minimax method. On the other hand, due to the poor accuracy
for high propagation angles, the modified Taylor series filters could not reproduce these
triplications at all.
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The accuracy results obtained for the different values of Thomsen parameters, and
for the P and SV propagation modes in TI media suggest that the depth extrapolation
filters can propagate with accuracy up to a maximum group angle. For filters of length
N = 39 coefficients, that maximum group angle is about 70 degrees. For isotropic media,
the group angle is equal to the phase angle, so the maximum dip that can be propagated
with accuracy will also be 70 degrees. In TI media, the anisotropy in the media changes
the relation between phase angle and group angle. Depending on the anisotropy values
for a given medium, different phase angles can correspond to a group angle of 70 degrees.
Therefore, anisotropy will determine the maximum dip of structures in the subsurface
that can be migrated with accuracy.

Results from the field data set show that because of the low estimated valued for 7,
and for the range of dips (0-50 degrees) present in the area, the influence of anisotropy on
both the DMO process and correct location in depth of the reflectors in depth migration
was appreciable, but this influence was negligible on the lateral positioning resulting
from depth migration. Also, of importance was the use of an anisotropic DMO algorithm
(Anderson et. al., 1994) to get not only an estimate of the anisotropic parameter 7
as a function of time, but also to obtain a DMO-plus-stack section that shows better
definition of dipping events than that obtained assuming isotropic media. Thus, it was
found essential to consider anisotropy in the DMO process in order to obtain a good
mapping of the fault, while the influence of anisotropy on the lateral positioning in
poststack migration was negligible. These results suggest the fundamental role that
anisotropy corrections can play in prestack seismic data processing.

Here, I wish to recommend several directions along which one might expand the re-
search and practical applications of the results obtained in this thesis. First, the explicit
depth-extrapolation method can be extended to depth migration of 2D and 3D prestack
data in anisotropic media. The results from the field data set show that the influence of
anisotropy on the prestack process (DMO in this case) was stronger than that observed
in the poststack migration. Therefore, although evidence presented here and elsewhere
suggests that poststack migration via explicit operators has a limited dip range of appli-
cability (i.e., up to about 50 degrees and the approximate 70-degree limit of accuracy for
the explicit-operator approach), it is likely that prestack migration can benefit greatly
from this approach.

The explicit method looks costly for prestack data in comparison with traditional
Kirchhoff methods; however, in areas with strong lateral velocity variations, where prestack
migration is often needed, the performance of explicit extrapolation must be compared
against Kirchhoff methods to see which method can better handle anisotropy and ve-
locity heterogeneities. Furthermore, the easy implementation of the process of depth-
extrapolation in parallel and vector computers could make the cost of depth migration
via explicit extrapolation competitive with the cost of Kirchhoff migration. In addition,
1t would be also useful to study the performance of explicit extrapolation in doing fo-
cussing analysis in complex areas where anisotropy may be present. As shown in the
synthetic prestack results in this thesis, considering anisotropy in depth extrapolation
can help to improve the imaging.
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Finally, there is room to consider another kinds of anisotropy in the process of
depth migration via explicit filtering. Apparently, the methods developed in this thesis
can readily be applied to symmetry planes in orthorhombic media. Just by introducing
the expressions for phase velocity in that kind of media, extensions of the MTS, LS and
minimax methods look readily possible.
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Appendix A

RADIATION PATTERN IN ELLIPTICAL P AND SH WAVES

As I mentioned in Chapter 2, for elliptical anisotropy (¢ = §), Tsvankin (1994) found
that the magnitude of the P-wave displacement Up reduces to a simple function of the
group angle ¢ without application of the weak-anisotropy approximation:

F, L
4mpVHR [(1+26)(1 + 26 cos 9)

where R = /22 4+ r2 (z is the receiver depth, r is the horizontal source-receiver offset).
Along a given migration impulse response, or along a given wavefront, the distance R
changes with the group angle due to the anisotropy in the medium. For isotropic media,
the migration impulse response and wavefront are just circles, so R is constant. In
elliptical media, migration impulse response and wavefront are ellipses, so changes in R
along these ellipses will cause change in amplitudes with direction. However, anisotropy
(in particular, § # 0) also introduces the radical term in equation (A.1). As we shall
now see, the combined effect of both terms for elliptical media is an amplitude that is
independent of direction.

In elliptical media, the expressions for the group velocity and group angle reduce
to simple functions of the phase angle. Also, the phase velocity reduces to the exact

expression (Thomsen, 1986)
Vou(8) = Vaoy/1 + 26sin?6,

and differentiating with respect to to 4 yields

Up(R,¢) = (A.1)

dVoa(6) _ V36sin29
TN ()

Substituting the above equations into the formulas for the group angle and group velocity
[equations (2.19) and (2.20)], we obtain

tan(8) = (1 + 26) tan 6 (A.2)

1+ 46sin% 0 + 462sin? 9
1+ 26sin%4d

V,[4(6)] =vpo\/ (A.3)

Using equation (2.21) for the migration impulse response, we can write R in equation
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(A1) as
R= VT2 = 2V,),

where tq is the observed two-way time in the zero-offset section. With equation (A.3), R
can be finally expressed as

¢ 1+ 46sin%6 25in% @
R=—QVPO\/ + 46 sin” 8 + 46° sin (A4)

2 1+26sin*6
From the expression for the group angle [equation (A.2)] we obtain

_ 1 _ cos? 4
T 14 (1+26)2tan28 ~ cos?8 + (1 + 26)2sin%4’

cos® (6)

so the radical term in equation {A.1) can be expressed as

1 +_26 sin? 8
1+ 46sin® 6 + 462sin%6§”

V(A +26)(1+26cos? ) = (1 + 25)\/ (A.5)

Equations (A.4) and (A.3) then give us

Veoto \/ 1 +46sin® @ + 462sin? §

Ry/(1 +26)(1 + 26 cos? ¢p) = 5 Py

1+ 26sin6?
(1+ 25)\/1 + 45 sin? 0 + 462sin? 4

Finally, the radiation pattern for the elliptical P-wave can be written simply as a function
of the zero-offset time g as

F, 2
Tp(to) = —= . .
Ur(to) 4wpV3 to(1 + 26) (4.6)
Following an identical reasoning, we can obtain the radiation pattern for the SH-wave as
. Fy 2
Usu(to) = . Al
#0) = R+ 27) A

Equation (A.7) is completely independent of the phase angle § because the force
term F is constant (see Chapter 2), so equation (A.7) tells us that even when the shape
of the migration impulse response and wavefront are elliptical, the amplitude along these
curves for the SH mode in TI media is constant. On the other hand, for the P-wave
mode, equation (A.6) shows that the amplitude depends on 6 just through the force term
F,. This result was used in Chapter 2 to calculate the theoretical amplitude in Figure
2.13.
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Appendix B

PARKS-MCCLELLAN ALGORITHM TO CALCULATE MINIMAX
FILTERS

As discussed in Chapter 3, the design of a finite length filter in the minimax method
requires the specification of the parameters N, Kmaz, ks, and the ratio L = 6,/6;. The
Parks-McClellan (1972) algorithm is based on reformating the filter design problem as
a problem in polynomial approximation. The terms coslk in equation (3.3) can be
expressed as a sum of powers of cosk in the form

coslk = Ti(cos k), (B.1)

where Ti(z) is the I"*-order Chebyshev polynomial, defined as Ti(z) = cos(lcos™!z).
Using equation (B.1), we can write the frequency response of the filter in equation (3.3)
as a N; = (N — 1)/2th-order polynomial in cosk

Ny
Wik,w) =" hyw)(cos k). (B.2)

=0
As shown in Chapter 3, the minimization criterion in the filter design problem is
the minimax criterion, in which within the wavenumber bands we seek 2 frequency re-
sponse for the filter that minimizes the maximum weighted approximation error [see
equation(3.14)]. Parks and McClellan (1972) applied the alternation theorem to this

filter design problem

Alternation theorem. Let F, denotes the closed subset consisting of the disjoint union
of closed subsets of the real axis z. P, denotes an r**-order polynomial, and D,(z) denotes
a given desired function of z that is continuous on Fpy WEL(z) is a positive weighting
function, continuous on F,, and E,(z) denotes the weighted error

Ep(z) = WEIL()| Dy(z) — Pr(z)].
The maximum error || M || is defined as
| M |l= maz.er,| Ep(z)|-

A necessary and sufficient condition that P, is the unique rth-order polynomial that
minimizes || M || is that E,(z) exhibit at least (r + 2) alternations, i.e., there must exist
at least (r + 2) values z; in F, such that z; < 29 < ...z, and such that
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Ep(z:) = —Ep(zip) = | M| fori=1,2,...(r+1).

The demonstration of this theorem is given in Chenney (1966). The alternation theorem
states that the optimum filter must have a2 minimum of (r + 2) alternations, but does
not exclude the possibility of more than (r + 2) alternations. However, Oppenheim and
Schafer (1989) show that for a filter of length Nj:

¢ the maximum possible number of alternations is N; + 3

e alternations will always ocurr at kmq, and k, (maximum wavenumber in the prop-
agation region and first wavenumber in the evanescent region, respectively)

e all points of zero slope inside the passband and stopband will correspond to alter-
nations

Returning to our depth-extrapolation filter problem, from the alternation theorem
we know that the optimum filter W (k,w) will satisfy equation (3.14),

E,(k) = E(k)[D(k,w) — W(k,w)] = (=1)+16, fori=1,2,...N;+2, (B.3)

where §; is the optimum error. The above set of equations can be solved for the set of
coefficients h;(w) and for the optimum error §;. However, a more efficient alternative is
to use polynomial interpolation. The procedure begins by guessing a set of alternation
frequencies k;, @ = 1,2,... Nizo. Parks and McClellan (1972) found that for the given
set of extremal frequencies, §; is given by

Talt? b D(k,)
T a2 by (— 1)+ [ E, (k)

6 = (B4)

with

Np+2 1

bk:H

e (ke — %)

where z; = cosk;. That is, if W(k,w) is determined by the set of coefficients h;(w)
that satisfy equation (B.3), with é; given by equation (B.4), then the error function
goes through £6; at the (L + 2) frequencies k;. Since W (k,w) is known to be an Njth-
order trigonometric polynomial, we can interpolate a trigonometric polynomial through
(L +1) of the (L + 2) known values W (k;,w). Now, W(k,w) is available at any desired
wavenumber without the need to solve the set of equations (B.3). Parks and McClellan
used Lagrange interpolation to evaluate W(k,w) and E,(k) on a dense set of frequencies
in the passband and stopband. If [E,(k)] < 6, for all wavenumbers in the bandpass
and stopband, then the optimum approximation has been found. Otherwise we must
find a new set of extremal frequencies. Adopting the philosophy of the Remez method
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(McClellan et al., 1972), the extremal frequencies are exchanged for a completely new set
defined by the (IV;+2) largest peaks of the error curve. The complete cycle (computation
of é;, fitting a polynomial to the assumed error peaks, and then locating the actual
error peaks) is repeated until é; does not change from its previous value by more than
a prescribed small amount. This value of §; is then the desired minimum maximum
weighted approximation error.

In the calculation of depth-extrapolation filters for isotropic media, Soubaras (1992)
found that the number of iterations needed to calculate the filters was about 12. I found
a similar number of iterations for the filter calculation in TI media.
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Appendix C

FILTERS FOR NON-VERTICAL AXIS OF SYMMETRY

In Chapter 3, I pointed out that the computer time to calculate explicit filters for
TI media with a non-vertical axis of symmetry is more than twice the time needed to
calculate the filters for TI media with a vertical axis of symmetry. I show in this appendix
how to avoid this expensive calculation. I obtain the non-symmetrical filters needed for
a TI media with a tilted axis of symmetry, by calculating just two symmetrical filters.

Figure C.1 shows two theoretical migration impulse responses calculated for a TI
media with a tilted axis of +20 (black curve) and -20 (gray curve) degrees with respect
to the vertical (¢ = 0.1 and § = —0.1 in both curves). For negative midpoints, the gray
curve has exactly the same shape that has the black curve for positive midpoints and
vice versa. If we calculate symmetrical depth-extrapolation filters for the same TI media
as in Figure C.1 using spatial wavenumbers given by

wsiné
Vor(6 — )’

where ¥ = 20 degrees is the tilt of the symmetry axis, the migration impulse response
of these filters will reproduce the gray curve for negative midpoints and the black curve

for positive midpoints. On the other hand, filters calculated using spatial wavenumbers
given by

kr = (C.1)

_ wsiné

T Va8 + )
will reproduce the black curve for negative midpoints and the gray curve for positive
midpoints. Neither of the filters calculated in equations (C.1) or (C.2) give us one of
the theoretical migration impulse responses of Figure C.1. So the idea is to combine the
symmetrical filters of equations (C.1) and (C.2) to obtain a non-symmetrical filter that
reproduces one of the impulse responses in Figure C.1. Let us suppose that we want
to calculate filters for a tilted axis of 20 degrees. If we denote by p(k,) and n(k,) the
frequency responses of the filters calculated in (C.1) and (C.2), respectively, the frequency
response t(k;) of the desired non-symmetrical filter will be given by

(C.2)

t(kz) = S(k)p(kz) + S(—kz)n(kz), (C.3)

where S{k,) represents the step function defined as

1, if k> 00,
Stka) = { 0, if k. <0.0.
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F1G6. C.1. Theoretical depth-migration impulse responses for tilted axis of symmetry of
20 and -20 degrees. In both curves, €=0.1, and §=-0.1.

and p(k,) is given by

(N~-1)/2
plks) = ). pacosk.n,
n=0
where p,, are the symmetrical filter coefficients for p, and N is the total number of filter
coefficients. Similar expressions hold for the frequencies responses t(k,) and n(k,). The

depth extrapolation process is applied in the (w, z) domain, so we need to take the inverse
spatial Fourier transform of equation (C.3) to obtain

tn = pn * S(kz) + 1y + S(—k,), (C4)

where * denotes convolution in the z domain and the tilde represents the inverse spatial
Fourier transform. The step function has Fourier transform given by

Slke) = 5(6(2) ~ =)

S(=ks) &= 5(0() + =),

where §(k,) is the Dirac delta function. Therefore, equation (C.4) is given by
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1 1,-1
tn = §{pn + na] + 5(',;1;) % [P — M.

The operator —1/(wiz) is the Hilbert transform operator, so the last equation can be
rewritten as

ty =
1 1 , =
tn=§(pn+nn)+§H*(nn—pn) n=—‘N/2""’_1 (C.O)

where H denotes a discrete Hilbert transform operator.

(Pn+nn)+%H*(p,,—-nn) n=0,...,N/2

NI
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