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ABSTRACT
Modeling the temporal evolution of wavefield solutions through models with heteroge-
neous material properties is of practical interest for many scientific applications. The
acoustic wave equation (AWE) is often used for studying wave propagation in both
fluids and solids and is crucial for many applications including seismic imaging and
inversion as well as non-destructive testing. Analytical AWE solutions rarely exist for
complex heterogeneous media, so methods for generating numerical AWE solutions
are very desirable. Traditional numerical solvers require discrete model representations
with many restrictions placed on the shape and spacing of grid elements. In this work
we use a relatively new class of numerical solvers known as physics informed neural
networks (PINNs) that provide a mesh-free alternative for generating AWE solutions
using a deep neural-network (DNN) framework. We develop a time-domain AWE for-
mulation in a loss function to train the network parameters. The initial conditions are
enforced by enforcing hard constraints on neural network instead of including them as
separate terms in the loss function. We also use a Fourier neural network (FNN) to al-
leviate the spectral bias commonly observed when using full connected neural network
(FCNN) in the conventional PINN approach. The numerical tests on both 2D homo-
geneous and heterogeneous velocity models confirms the accuracy of our approach.
We also compare PINN-based solutions with those computed by a pseudo-spectral
method. Using FNNs also helps in the convergence of AWE solutions especially for
heterogeneous model tests.
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1 INTRODUCTION

Numerical solutions of wave equations are of scientific importance for wide range of physical problems including in the fields
of seismology, acoustics, fluid dynamics, medical science, and electromagnetics. Various numerical approaches including finite-
difference, finite-element, finite-volume, and spectral methods have been developed to compute wavefield solutions; however,
existing numerical methods require explicitly solving the governing wave equation in an step-wise fashion for each time step
and can suffer from numerical errors caused by the discrete meshing. A further challenge is the significant computational cost
associated with obtaining multi-scale solutions that require discretizing the computational grid very finely, which results in large
memory and/or hardware storage requirements.

Recently, the use of deep neural networks (DNNs) has gained significant attention for modeling physical systems due to their
ability to learn complex dynamical systems. Raissi et al. (2019) propose a general framework, known as physics-informed neural
networks (PINNs), to solve both forward and inverse problems involving systems of nonlinear partial differential equations (PDEs).
The PINN framework involves approximating the PDE solution variables with a DNN. The physical laws governing the PDE,
and the initial and boundary conditions (ICs and BCs) are then embedded as terms in the loss function to regularize the network.
Standard GPU-accelerated computational packages (e.g., TensorFlow, PyTorch, Keras) then can be used to find the set of solution
variables that optimally minimizes the loss function and thereby satisfies the PDE, ICs and BCs.



2 Sethi et al.

PINNs offer many practical advantages over traditional numerical methods. First, they represent a mesh-free numerical ap-
proach and are less prone to discretization errors. The partial derivative operators involved in the PDEs are computed using auto-
matic differentiation (Baydin et al., 2018), which is exact and free of truncation errors as compared to numerical differentiation
methods using approximate stencils derived from Taylor-series or other expansion methods. Once the network is trained, the com-
plete spatial-temporal solution domain can be simulated in a single step, which is important for imaging and inversion applications
(e.g., subsurface geological characterization and non-destructive testing) that use the time history of propagating wavefield.

The PINN framework has been used for solving numerous PDEs such as the Navier-Stokes equation for modeling fluid
flow (Sun et al., 2020; Jin et al., 2021), cardivascular flow (Kissas et al., 2020), the Black-Scholes equation for option pricing in
computational finance (Tanios, 2021), the Schrödinger equation for monitoring pulse evolutions in optical fiber (Jiang et al., 2021),
the non-linear equations of motion for structural seismic response modeling (Zhang et al., 2020), the eikonal equation for computing
activation times for a conduction velocity field (Sahli Costabal et al., 2020), the seismic travel-time equations (Waheed et al., 2021),
the Burgers equation for shallow-water modeling (Raissi et al., 2019), and the Allen-Cahn equation for reaction-diffusion systems
(Raissi et al., 2019).

The application of PINNs for generating full-wavefield solution for acoustic wave equation (AWE) has been studied by dif-
ferent authors. Moseley et al. (2020) used PINNs to investigate acoustic wave propagation; however, this approach used wavefield
snapshots from a finite-difference method as well as physics-based constraints to train their network. Karimpouli and Tahmasebi
(2020) studied PINNs for the forward and inverse seismic AWE applications and demonstrated that PINNs can learn wavefield
solution with fewer training data and are capable of estimating the acoustic velocity distribution. Song et al. (2021) formulated the
problem in frequency domain to study PINNs for studying seismic wavefields in transversely isotropic media with vertical sym-
metry axis (VTI) using an acoustic approximation. They computed scattered pressure wavefields based on a perturbation from an
isotropic reference solution instead of directly simulating the full pressure wavefield itself.

A key challenge for using PINNs for generating AWE solutions is to train the network without using training data. In practice,
assuming a known AWE solution at a certain time step largely defeats the purpose of using PINNs for solving AWE. Because
of the multi-scale and oscillatory nature of the AWE solution, it becomes challenging to train the network especially the higher
frequencies. A further challenge is handling the injection of source energy localized in both space and time using PINNs. In seismic
applications, sources with localized energy over a narrow temporal and spatial window are often used to mimic explosives and
marine air gun arrays.

To overcome the aforementioned challenges, we propose to use a time-domain PINN formulation to solve the AWE for
pressure wavefields. In contrast with conventional PINN approaches, we train a modified NN in which the initial conditions are
satisfied explicitly using hard constraints in the same NN that is used to approximate the solution, which is important in terms of
solution convergence. We test our approach using both homogeneous and heterogeneous velocity acoustic models. For the latter
we advocate the use of Fourier neural networks (Tancik et al., 2020) instead of the more commonly used fully connected NN to
alleviate the spectral-bias towards the low-frequency components during the training process.

In this paper, we start by reviewing the theory of wave propagation in acoustic media. Then, we briefly discuss the 2-D PINN
approach including the inputs and outputs of fully-connected neural networks and the loss terms involved in the training procedure.
Next, we briefly discuss Fourier-neural networks and the differences between these and fully-connected neural networks. We next
discuss the procedure of enforcing initial conditions in a hard manner using a single neural network and changes in network output.
Finally, we present numerical examples including using Fourier neural network for increasing velocity model complexity.

2 THEORY

The PINN framework uses physical laws that include the PDE and initial and boundary conditions (ICs and BCs) as terms in the
form of loss functions that are used to train the NN parameters. In this section, we first discuss the theoretical aspects of AWE
including the ICs and BCs. We then present a standard PINN formulation using fully connected neural networks (FCNNs), briefly
introduce the Fourier neural networks (FNNs), and describe the differences between FCNNs and FNNs. Finally, we discuss the
enforcement of ICs within the NN (i.e., hard enforcement) instead of using separate loss-function terms (i.e., soft enforcement).

2.1 Acoustic wave equation

Two-dimensional (2-D) acoustic wave propagation in a fluid is described by a coupled system of first-order partial differential
equations that represent the conservation of linear momentum,

ρ∂tvi + ∂ip = 0, i = 1, 2, (1)
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and the conservation of mass,

∂tp+ ρc2∂jvj = f, j = 1, 2, (2)

where ρ is the fluid density, p is the pressure, vi is the particle velocity, index i represents the two different coordinate axes, c is the
medium velocity, and f is the body force per unit volume. We indicate summation notation over repeated indicies. For a constant
density medium, we can further substitute equation 1 into equation 2 to obtain a second-order PDE

∂t∂tp− c2∂j∂jp = f, j = 1, 2, (3)

which is the form of the PDE solved in the present work.

2.2 Initial and boundary conditions

For the initial conditions, we assume a quiescent medium at t = 0 s, which leads to the first boundary condition

p(x, z, t = 0) = 0. (4)

This assumption also requires that the temporal derivative of pressure at t = 0 s is likewise zero,

∂tp(x, z, t = 0) = 0. (5)

For the boundary conditions, we use the absorbing boundary conditions (ABCs) (Engquist and Majda, 1977) to absorb reflections
from the boundaries. One advantage of using PINN approach is that incorporating ABCs comes at no additional computation cost,
which is in contrast to other numerical methods where one explicitly applies the ABC operators. Thus, there is no need to enforce
ABCs in PINNs via an additional loss term.

2.3 Physics Informed Neural Networks (PINNs)

PINN approaches commonly use a fully connected deep neural networks (DNNs) to approximate the solution variable, which
herein is the pressure wavefield p given in equation 3. A DNN is a stack of neurons organized in different layers (i.e., an input layer,
multiple hidden layers and an output layer; see Figure 1). The input layer includes the spatial (x, z) and temporal t coordinates
represented by the tensor X(x, z, t). For illustration, for a system with L hidden layers with ith hidden layer having Ni neurons,
the connection between (i− 1)th to ith hidden layer can be represented as

hi = σ (bi +Wihi−1) 1 ≤ i ≤ l, (6)

where hi is the output tensor, hi−1 is the input tensor, Wi ∈ RNi×Ni−1 is the trainable weight matrix, bi ∈ RNi is the trainable
bias vector, and σ is the non-linear activation function. In this case, we also define h0 = X(x, z, t) while the output layer hL+1

represents the AWE pressure field solution. The goal is to find the set of all tunable parameters, Wi and bi, for all hidden layers,
such that it minimizes the loss function defined by the PDE and the ICs and BCs.

To solve the AWE, the loss function to be minimized incorporates the governing PDE and the two initial conditions

LPDE : ∂t∂tp− c2∂j∂jp− f, i = 1, 2 (7)

LIC1 : ∂tp(x, z, t = 0), (8)

LIC2 : p(x, z, t = 0). (9)

Thus, the loss function we aim to minimize is

L = ||LPDE ||2 + α1||LIC1||2 + α2||LIC2||2, (10)

where || · ||2 indicates the L2 norm, and α1 and α2 are scalar weight terms to control the relative contribution of the IC terms.
Figure 2a presents a schematic representation of the PINN workflow using a DNN to approximate acoustic pressure wavefield.

The NN outputs the pressure wavefield and then spatial, and temporal derivatives of the output are computed using an automatic
differentiation approach to calculate the three loss function terms. The optimization goal is update the NN parameters such that
they globally minimize all three loss-term components.

2.3.1 Fourier Neural Network

DNNs are generally biased toward low-frequency solutions (Rahaman et al., 2019) that create challenges for learning high-
frequency wavefield components of AWE solutions. This is especially true for heterogeneous velocity models where NNs must
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Figure 2. (a) Schematic representation of PINNs framework. The neural network with L hidden layers on the left-hand side. (b) Modified PINN
framework with hard-enforcement of initial conditions. The neural network with L hidden layers on the left-hand side.
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learn sharp-gradient wavefield features. In this work, we use a Fourier-neural networks (FNN) for our PINN framework (Tancik
et al., 2020). In FNNs, the input coordinates X(x, z, t) are mapped before being input to the NN as

h0 = [sin(2πf ⊙ X); cos(2πf ⊙ X)], (11)

where f ∈ Rnf×N0 is the trainable frequency matrix, nf is the number of frequency sets, N0 are number of neurons in first layer,
and the ⊙ symbol is the Hadamard product (i.e., point-wise element multiplication). The remainder of the layers remain same as in
a FCN in equation 6. This transformation allows the network to learn the higher frequencies by shifting the spectrum of the neural
tangent kernel (NTK), a kernel regression method used to study NN dynamics using gradient-descent-based learning in the limit of
infinite-width layers, controlled by parameter f. We refer the reader to Tancik et al. (2020) for further details.

2.4 Enforcing Initial Conditions in PINNs

In the conventional PINN framework, the ICs and BCs are enforced as loss terms in the objective function used for network training.
However, this will not necessarily satisfy the ICs because there is no guarantee that the loss terms will be identically zero during
the minimization process. Therefore, enforcing the initial conditions in a soft manner as a loss term will not yield a unique solution
to the specific PDE system in question.

To avoid this issue, we enforce the ICs using hard constraints by multiplying a function g(t) to the NN output such that
g(t = 0) = g′(t = 0) = 0, where the prime indicates a temporal derivative and t = 0 s is when the source wavelet is excited
(i.e., as if g(t) were a Dirac delta function δ(t)) . The NN input is still X = X(x, z, t), but the NN output is a transform variable p∗

related to p via

p = g p∗. (12)

Using this expression, equation 7 can be rewritten as

∂tp = g′p∗ + g ∂tp
∗. (13)

When t = 0 s, equations 12 and 13 are exactly zero and thus will satisfy the two ICs defined in equations 7 and 8. Accordingly,
there is no need to include terms LIC1 and LIC2 in our loss function, and thus we explicitly set α1 = α2 = 0 in equation 10.
Figure 2b shows the modified PINN workflow diagram with hard enforcement of the initial conditions, which results in an overall
simplification of the NN.

For our numerical experiments we compared two functions that satisfy the two ICs in equations 7 and 8:

g1 = a1t
2, (14)

and

g2 = 1− sech (a2 t) , (15)

where a1 and a2 are scaling factors. We did not observe significant differences in the results as long as the chosen fi function
satisfies the ICs. We briefly discuss the numerical results from both functions in the Discussion section below.

3 NUMERICAL EXAMPLES

We test our PINN framework on both homogeneous and heterogeneous velocity models and employ FNNs for all numerical tests.
We first consider a Nz × Nx = 200 × 200 homogeneous velocity model (c=1.5 km/s) with dx = dz = 10 m spacing. We use a
source term in equation 3 given by

f(x, z, t) = s(x, z) r(t), (16)

which is the product of a 20 Hz Ricker wavelet r(t) that is injected as a spatially distributed Gaussian source s(x, z) centered at
[sx, sz] = [1.0, 1.0] km with weights given by

s(x, z) = e−10000((x−sx)2+(y−sy)
2). (17)

We run training for 60,000 iterations and compare the computed PINN pressure field to a solution simulated using a highly
accurate pseudo-spectral method (Carcione, 2010).
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Figure 3. Snapshots for homogeneous velocity model. The left and center columns present the pseudo-spectral and PINN solutions while the right
column shows the direct differences. Rows (a)-(c) show the wavefield (differences) at times 0.15 s, 0.30 s, and 0.45 s, respectively.

3.1 Homogeneous Model

Figure 3 shows the wavefield snapshots for the pseudo-spectral method (left column), the PINN approach (center column), as well
as their direct wavefield difference (right column). The top, center and bottom rows show the evolution of the wavefield at 0.15 s,
0.30 s and 0.45 s, respectively. The PINN algorithm has accurately learned the phases of the direct arrivals; however, there are
minor observable amplitude mismatches. Figure 3c shows the wavefield snapshots at 0.45 s and the amplitude variation with depth
extracted at the red line.

Figure 5 shows the energy difference between the FNN and pseudo-spectral solutions for the homogeneous model using g1
and g2 functions with different scaling parameters computed as

E(t) =

∑
x,z

(p(x, z, t)− p0(x, z, t))
2

∑
x,z

p20(x, z, t)
, (18)
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Figure 4. Snapshots for homogeneous velocity model at t=0.45 s.(a) Pseudo-spectral wavefield solution. (b) PINN wavefield solution. (c) Wavefield
difference between solutions in (a) and (b) computed along the vertical red line in (a) and (b).

where p(x, z, t) and p0(x, z, t) are NN and pseudo-spectral solution, respectively. We observe the energy differences for g1 = a1t
2

and g2 = 1− sech(a2t) to be minimum and the solutions from other scaling parameters for both functions were comparable.

3.2 Layered Model

Next, we consider a 200 × 200 heterogeneous velocity model with three layers shown in Figure 6. We again inject a 20 Hz Ricker
wavelet as a spatially distributed source centered at [sx, sz] = [1.0, 1.0] km and use the same FNN for training, but now run a
total of 100,000 training iterations. The left and center columns of Figure 7 respectively show wavefield snapshots for the pseudo-
spectral and PINN solvers at different time steps, while the right column presents the direct wavefield differences. From top to
bottom, the three rows show the wavefields at 0.15 s, 0.30 s and 0.45 s. We note that the PINN solver has learned the internal
reflections generated by the layers. Figure 7c shows the snapshot at t=0.45 s and the amplitudes extracted at red vertical line.

3.3 Marmousi Model

Finally, we test our algorithm on modified Marmousi model (see Figure 9). A 20 Hz Ricker wavelet is injected as a spatially
distributed source centered at [sx, sz]=[1.0,0.75] km. Figure 10 shows the snapshots at different time steps and the PINN and
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Figure 5. Energy plots for functions with different scaling factors: (a) g1 = a1t and (b) g2 = 1− sech a2t.
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Figure 6. Layered velocity model.

the pseudo-spectral numerical solution difference. We observe a good agreement between the phases of the arrivals originated
from sharp gradients in the velocity model; however, there are again fairly minor pressure wavefield amplitude differences (see
Figure 10c).

4 DISCUSSION

The time-domain PINN algorithm can learn AWE wavefield solutions for both homogeneous and more complex heterogeneous
models. However, there are still challenges in learning amplitude in the absence of training data. FNN training requires choosing
a set of frequencies. For homogeneous and layered velocity models, we opted for 20 frequencies that were uniformly distributed
between 0-4 Hz in equation 11. However, for Marmousi model we increased this to 50 frequencies between 0-10 Hz. We also
experimented with higher frequencies; however, this approach increased the overall training time while minimally improving am-
plitudes accuracy. Thus, we kept the number of layers to eight, the number of neurons in each layer at 256, and employed the swish
activation function (Ramachandran et al., 2017).
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Figure 7. Snapshots for layered velocity model. The left and center columns present the pseudo-spectral and PINN solutions while the right column
shows the direct differences. Rows (a)-(c) show the wavefield (differences) at times 0.20 s, 0.50 s, and 0.50 s, respectively.

We also observe an accuracy improvement with increasing the number of layers from eight to ten and increasing the number of
neurons in each layer from 256 to 1024; however, this drastically increased the total training time. From the numerical experiments,
we can see PINN approach can match the phases of different arrivals accurately, but further work is required to learn wavefields
amplitudes.

5 CONCLUSIONS

We developed a time-domain PINN approach to learn the wavefield solutions for acoustic wave equation without using training
data. The enforcement of initial conditions in hard manner by multiplying a temporal function to the network output, which proved
to be crucial for training convergence. The comparison with pseudo-spectral method demonstrates that PINN approach is able
to produce accurate phases of different arrivals; however, wavefield amplitudes had minor inaccuracies even for heterogeneous
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Figure 8. Snapshots for layered velocity model at t=0.45 s. (a) Pseudo-spectral and (b) PINN wavefield solutions. (c) Wavefield differences com-
puted at the vertical red line indicated in (a) and (b).

velocity models. Thus, further refinement of this approach is deemed necessary for applications where a high-degree of amplitude
fidelity is required.
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Figure 10. Snapshots for modified Marmousi velocity model. The left and center columns present the pseudo-spectral and PINN solutions while
the right column shows the direct differences. Rows (a)-(c) show the wavefield (differences) at times 0.30 s, 0.50 s, and 0.60 s, respectively.
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Figure 11. Snapshots for modified Marmousi model at t=0.55 s. (a) Pseudo-spectral and (b) PINN wavefield solutions. (c) Wavefield differences
computed at the vertical red line indicated in (a) and (b).


