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ABSTRACT
Seismic interferometry is a technique that allows one to estimate the wavefields ac-
counting for the wave propagation between seismometers, any of which can act as
a virtual source. Interferometry, particularly passive noise interferometry, has been
applied to several geophysical disciplines such as passive monitoring and distributed
acoustic sensing. In practice, one requires long recordings of seismic noise for noise
interferometry. Additionally, some receivers in seismic arrays may be absent or in-
operative due to issues of receiver installation and malfunction. Reducing the storage
for seismic noise records and alleviating the limitations of receiver operation and in-
stallation require wavefield reconstruction and regularization techniques. Compressive
sensing is one such method that can reconstruct seismic wavefields and help mitigate
the limitations by exploiting the sparsity of seismic waves.
Using numerical examples, we show that one can apply compressive sensing to recover
interferometric wavefields resulting from interferometry of a linear seismic array. Tra-
ditionally, one can interpolate interferometric wavefields using correlograms provided
by one virtual source. This method is called single-source wavefield reconstruction. We
propose an alternative technique called multi-source wavefield reconstruction, which
applies compressive sensing to reconstruct multiple interferometric wavefields using
correlograms provided from all available virtual sources. To exploit the sparsity of
interferometric wavefields, we apply the Fourier and Curvelet transforms to the two
reconstruction schemes. Using the signal-to-noise ratio (SNR) to compare the wave-
field reconstructions, the Fourier multi-source method improves the recovery of inter-
ferometric wavefields by approximately 50 dB compared to the Fourier and Curvelet
single-source wavefield reconstructions.
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1 INTRODUCTION

Seismic interferometry (SI) is widely applied to estimate the wavefields propagating between seismometers. The technique allows
each seismometer to become a virtual source (VS), where wavefields from the VS are recorded by the other seismometers. Appli-
cations and principles of SI have been explained in several review papers (Larose et al., 2006; Curtis et al., 2006; Wapenaar et al.,
2010; Snieder and Larose, 2013). For SI, one can estimate the interferometric wavefields using cross-correlation (Asano et al.,
2017; Miyazawa et al., 2008; Mordret et al., 2010; Shapiro et al., 2005), deconvolution (Nakata et al., 2011; Pianese et al., 2018;
van Dalen et al., 2015; Vasconcelos and Snieder, 2008b,a), cross-coherence (Nakata et al., 2011; Prieto et al., 2009), or convolution
(Curtis and Halliday, 2010; Entwistle et al., 2015).

Seismic noise interferometry is an application of cross-correlation SI that can be used in passive seismic surveys. Noise
interferometry typically requires long seismic records, which requires much data storage. For example, Lin et al. (2008) and Nakata
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et al. (2015) cross-correlate noise recordings over 1-year and 3-month records, respectively. Jayne et al. (2022) handle the long-
recording issue by reducing the number of the Fourier coefficients required for the cross-correlation in the Fourier domain (Snieder
and Wakin, 2022). In addition, seismic arrays (e.g. the US array from IRIS) are usually sparse and irregular. In practice, dense and
regular seismic profiles are not typically acquired due to limitations of installation and operation of seismic sensors, for example
because of restricted locations for receiver installation and low-quality seismic records (low SNR) in some receivers. These irregular
seismic records may affect the performance of subsequent seismic data processing steps. For example, seismic imaging such as the
Kirchhoff migration requires regular seismic shot lines to enhance imaging of the subsurface and to mitigate post-migration noise
(Al-Gain et al., 2020; Poole and Herrmann, 2007; Cao et al., 2018). Irregular sampling of seismic data can also affect the attenuation
of noise for guided wave and ground roll removal (Mann and Emanuel, 2006). Regularizing seismic shots can improve the SNR
of seismic signals and the alignment reflection events (Chopra and Marfurt, 2013). Thus, wavefield reconstruction or regularization
techniques are required to alleviate the issue of irregular sampling of seismic data.

Wavefield reconstruction techniques include wave-equation-based methods (Peters et al., 2014; Kim et al., 2015), linear pre-
diction filter methods (Vaidyanathan, 2007; Islam et al., 2015), rank-reduction methods (Wu and Bai, 2018; Innocent Oboué et al.,
2021), mathematical-transform methods (Wang et al., 2016), and deep learning (Liu et al., 2019). These techniques help handle
the limitations of receiver malfunction and installation by recovering the missing signals within the gaps of the seismic receiver ar-
rays. Among these techniques, compressive sensing (CS) is a transform-based method that has gained popularity and been applied
in many signal processing disciplines (e.g. medical and geophysical) (Candès and Wakin, 2008). The CS method is a sampling
paradigm that reduces the traditional sampling requirements of the Shannon sampling theorem in which the sampling rate of a
signal has to be twice the maximum frequency of the signal (Donoho, 2006). CS has been shown to be effective for interpolating
seismic profiles (Herrmann et al., 2008; Hennenfent et al., 2010) and surface waves (Zhan et al., 2018) using signals recorded on
an irregular seismic array.

Because SI can estimate the interferometric wavefields accounting for wave propagation between receivers, SI can provide
sampling and coverage of wavefields in the area under receiver arrays. Thus, SI may provide new perspectives or improvements to
seismic signal reconstruction. A technique called interferometric interpolation utilizes a matched filter and virtual source gathers
provided by SI (Wang et al., 2009; Hanafy and Schuster, 2014; Xu et al., 2018). This technique can extrapolate near-offset seismic
profiles and improve the interpolation quality of missing seismic traces compared to conventional interpolation methods without
SI. Since Zhan et al. (2018) demonstrate the reconstruction of surface waves on a dense surface array generated from a source using
CS, we can use CS reconstruction to recover surface waves retrieved using SI on a dense receiver array when some receivers are
missing.

In this work, we use a linear receiver array to record noise wavefields when some traces are missing. Using SI, we retrieve
cross-correlation profiles from available traces and then aim to reconstruct the missing cross-correlation wavefields using CS. We
propose a joint reconstruction technique called multi-source wavefield reconstruction where we use CS to reconstruct the missing
interferometric wavefields (i.e. cross-correlations). Our work focuses on the estimation of fundamental-mode surface waves using
SI which is illustrated by synthetic surface waves. In Section 2, we describe the basic theory of cross-correlation interferometry and
CS. We then explain the processes to simulate interferometric surface waves and the Fourier and Curvelet transforms used in our
wavefield reconstruction. In Section 3, we show the different wavefield reconstruction techniques using different sparse transforms
and compare these reconstructions to our proposed multi-source wavefield reconstruction.

2 THEORY AND SYNTHETIC EXAMPLE

2.1 Cross-correlation interferometry

Using a frequency-domain formulation, one can express the wavefield u(xr,x, ω) excited from a point source at x and recorded at
xr by

u(xr,x, ω) = W (x, ω)G(xr,x, ω), (1)

where ω is the angular frequency, W (x, ω) is the source-time function, and G(xr,x, ω) is the frequency-domain representation
of the Green’s function that accounts for the wave propagation from x to xr. The cross-correlation of two wavefields recorded at
receivers xa and xb is given by

Cba = u(xb,x, ω)u
∗(xa,x, ω) = |W (x, ω)|2G(xb,x, ω)G

∗(xa,x, ω), (2)



Multi-source wavefield reconstruction 3

where the asterisk denotes complex conjugation. Integrating the cross-correlation equation (eq 2) over a closed surface that includes
uncorrelated sources on the surface surrounding the receivers (Snieder et al., 2007) gives

∮
Cbad

2x = ⟨|W (x, ω)|2⟩
∮

G(xb,x, ω)G
∗(xa,x, ω)d

2x, (3)

where ⟨|W (x, ω)|2⟩ is the average of the amplitude spectrum of the source. Because the integrated cross-correlation in equation 3
is proportional to G(xa,xb, ω) (Wapenaar and Fokkema, 2006), one can estimate the approximate Green’s function that accounts
for the wave propagation between xa and xb given by

[
G(xa,xb, ω)−G∗(xa,xb, ω)

]
⟨|W (x, ω)|2⟩≈ − 2iω

ρc

∮
Cbad

2x, (4)

where iω corresponds to the time derivative and G(xa,xb, ω) and G∗(xa,xb, ω) are the causal and the acausal parts of the Green’s
function that accounts for the wave propagation between xa and xb, respectively. In practice, one can estimate the integral in
equation 4 by stacking the correlograms of all sources on the closed surface. For noise interferometry, one estimates the integral by
stacking cross-correlated noise windows taken from long noise records. Our work compares seismic correlation profiles recovered
using different reconstruction algorithms. Thus, we only estimate the integrated correlograms, ignoring the constants, the time
derivative, and the source-time function in equation 4.

2.2 Signal recovery using CS and sparse transforms

The Nyquist sampling theorem formulates the required sampling rate for a given frequency or wavenumber content of a signal.
One can use compressive sensing (CS) to recover a signal from fewer random measurements than the sampling theorem requires
by exploiting the sparsity or compressibility of signals in a basis or frame (Donoho, 2006; Wakin, 2017).

Using CS, one can represent an N -dimensional signal f via its sparse coefficients α in a basis or frame Ψ: f = Ψα. For
example, one can transform seismic data f using the Fourier basis Ψ with Fourier coefficients α. The signal f is sparse when
K ≪ N , where K is the number of non-zero coefficients in α, and f is compressible when the sorted coefficients decay rapidly to
approximately zero (Wakin, 2017). A K-sparse signal can be recovered without information loss if a sensing or sampling function
Φ, which prescribes how the signals are sampled, satisfies the restricted isometry property (RIP). This property ensures the stability
and energy conservation of sparse signals; examples of sampling matices that satisfy the RIP are random Gaussian and sub-Gaussian
matrices (Donoho, 2006; Wakin, 2017; Candès and Wakin, 2008). In our example, the sampling function Φ specifies at which pairs
of receivers on a linear array with randomly missing sensors the correlogram is available.

To satisfy RIP, one needs at least M compressive measurements d, where d = Φf and M = O(Klog(N/K)), to reconstruct
a K-sparse signal (Wakin, 2017; Candès and Wakin, 2008). Several different algorithms to seek the sparse solution have been
reviewed by Rani et al. (2018). One common method is to solve the following l1 optimization problem to recover the signal from
noisy data d with noise n, where d = Φf + n and σ is the constant bound of noise and ||n||2 ≤ σ,

min||α||1 subject to ||ΦΨα− d||2 ≤ σ. (5)

Once the coefficient vector α is recovered, one can reconstruct the signal by using f = Ψα.
For our CS wavefield reconstruction examples, we use the 2D and 3D Fourier transforms associated with space-time and

space-space-time dimensions of seismic data, respectively. An example of recovering space-space-time wavefields using the 3D
Fourier transform is the reconstruction of the Green’s function G(ri, rj, t) for locations ri and rj at time t. The discrete 2D and
3D Fourier transforms are equivalent to the 1D Fourier transform along each dimension of the signals (Nussbaumer, 1982). To
avoid wrap-around of the Fourier transform, we pad zeroes at the front and the end of our data matrix for each dimension. We also
apply the 2D Curvelet transform in our wavefield reconstruction using CS. The Curvelet transform represents signals using three
parameters: scales, location, and direction. We use the discrete Curvelet transform with wedge wrapping, previously written and
developed by Candès et al. (2006), to reconstruct interferometric wavefields.

2.3 Numerical model used for wavefield reconstruction

CS wavefield reconstruction can be applied to both active-source and noise interferometry. We use active-source interferometry as
an example for our CS wavefield reconstruction. Our synthetic model includes a linear seismic array consisting of 100 receivers and
2000 impulsive sources. The sensors are separated by 5 m from each other and the sources are uniformly distributed on a rectangle
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Figure 1. Geometry of sources and receivers used for the numerical examples. The sources (blue dots) are uniformly distributed on a rectangle
surrounding a linear receiver array (red dots). For clarity the figure does not show all the sources and receivers. In the example, 100 receivers and
2000 sources are uniformly spaced.

surrounding the array (Figure 1). In our study, we simulate surface waves using the 2D Green’s function of the Helmholz equation
(equation 18.46 in Snieder and van Wijk (2015)) given by

u(x, t) =

∫
W (ω)H

(1)
0 (k(ω)x)e−iωtdω, (6)

where u is the wavefield at time t, x is the distance between the receiver and the source, W (ω) is the source-time function, H(1)
0 is

the first Hankel function of degree zero, k is the wavenumber, and ω is the angular frequency. One can compute the wavenumber in
equation 6 by k(ω) = ω/c(ω), where c is the phase velocity.

In our simulation, the sources are delta functions bandlimited between 5-20 Hz and we use the phase velocity c(ω) of surface
waves for a laterally homogeneous layered medium, determined by Xia et al. (1999), to estimate the wavenumber in equation 6.
Using interferometry, we select a master receiver and cross-correlate the wavefields recorded at each station to the master sensor.
We then stack the cross-correlation for all sources. Each sensor thus can act as a virtual source providing surface waves recorded
by the other receivers.

3 WAVEFIELD RECONSTRUCTION

Our work involves two steps of signal processing where cross-correlation interferometry of numerical surface waves is performed
prior to CS reconstruction of interferometric wavefields. One can reconstruct interferometric wavefields using signals provided from
a virtual source by cross-correlating the noise recorded on one master receiver with the noise recorded on all other receivers. We
call this traditional method single-source reconstruction. By contrast, our proposed recovery method of interferometric wavefields
is called multi-source reconstruction, which uses the cross-correlations of all available virtual sources together to fill the gaps of
cross-correlation profiles.

Using a linear array consisting of 3 available and 2 missing receivers as an example, Figure 2 illustrates the processes and
differences of the single- and multi- source wavefield reconstructions. Each receiver in the array can act as a master receiver (VS)
producing a cross-correlation profile that accounts for the cross-correlation of wavefields recorded at the VS and the other receivers.
Figure 2 shows 3 correlation profiles associated with the 3 available receivers (VS1, VS3, and VS4) before wavefield recovery.
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Figure 2. Difference between the two schemes of wavefield recovery of correlation profiles of a linear array. The middle column shows the
correlation gathers before wavefield reconstruction. Single-source reconstruction (left column) of interferometric wavefields uses correlograms
with gaps (i.e. missing the 2nd and 5th receivers) provided only from a virtual source to recover interferometric wavefields inside the gaps. The
wavefield recovery for each VS is performed separately. Note that single-source reconstruction cannot recover the correlation profiles for VS2 and
VS5 because the master receiver for this virtual source gather is missing. By contrast, multi-source reconstruction (right column) of interferometric
wavefields uses correlograms with gaps provided from all available virtual sources to recover interferometric wavefields inside the gaps of all virtual
sources including the two missing correlation profiles. The wavefield recovery of all virtual sources is performed simultaneously.

Note that for these available profiles, the cross-correlated wavefields at the missing 2nd and 5th receivers are absent. Single-
source wavefield reconstruction is a source-by-source recovery operation and the method only uses the cross-correlated wavefields
of the available 1st, 3nd, and 4th receivers to reconstruct the correlated wavefields of the missing 2nd and 5th receivers. Thus,
using the single-source method, one can reconstruct 3 correlation profiles of the 3 available virtual sources but cannot reconstruct
the correlation profiles of the 2 missing virtual sources (Figure 2). By contrast, multi-source wavefield reconstruction uses the
correlation profiles provided by the 3 available VSs together to recover 5 correlation profiles for all virtual sources (Figure 2).

We compare the two schemes of wavefield reconstructions where CS reconstruction of interferometric wavefields is performed
after cross-correlation interferometry: single- and multi- source wavefield reconstructions. We use signal-to-noise ratio (SNR) to
determine the error of different wavefield reconstructions compared to the original wavefields. We then compare the SNR of the
different CS reconstruction schemes. The SNR is defined as 20log(||xori||2/||xori − xrec||2), where xori is the original and
xrec is the reconstruction of the correlograms. Because multi-dimensional Fourier reconstruction is computationally faster than the
Curvelet recovery, we use only the Fourier domain for multi-source reconstruction, while we use both the Fourier and Curvelet
domains for single-source reconstruction. In our work, we apply a discrete Curvelet transform with wedge wrapping developed by
Candès et al. (2006), using arbitrary scale and direction parameters given by 4 and 16, respectively.

Figure 3 shows the original interferometric wavefield and wavefield reconstruction examples when the master sensor is the
35th receiver and 80% of the receivers are absent from our array; the locations of available and missing receivers are shown
using yellow and blue colors in Figure 4, respectively. The Fourier and Curvelet single-source reconstructions give inaccurate
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Figure 3. Comparison between (a) the original cross-correlated wavefields when the master sensor is the 35th receiver, and the wavefield images
recovered by (b) Fourier multi-source reconstruction, (c) Fourier single-source reconstruction, and (d) Curvelet single-source reconstruction. In all
reconstructions, 80% of the sensors are absent.

wavefield reconstruction, in particular within 100 m (20 receivers) from the master sensor (Figure 3c and 3d). In contrast, the
Fourier multi-source reconstruction provides the interferometric wavefields (Figure 3b) recovered similarly to the original cross-
correlated wavefields (Figure 3a).

Figure 5 shows the error of different wavefield reconstructions, which is determined by the relative difference between each
reconstruction image (Figures 3b, 3c, and 3d) and the original image normalized with the maximum amplitude of the original image
(Figure 3a). Note that the colorbar scale for the single- and multi- source methods are different (Figure 5). The relative error of the
multi-source reconstruction is below 0.1% (Figure 5a) and is much smaller than the error of the single-source reconstruction that
ranges between 0-50% (Figure 5b and 5c). The reconstruction error of the Fourier and Curvelet single-source reconstruction ranges
up to 10-40% at all locations along the receiver array (Figure 5b and 5c). The Fourier and Curvelet single-source reconstructions
produce a relative difference of approximately 40% at locations within 100 m from the master sensor. By contrast, the Fourier
multi-source reconstruction gives a relative error of less than 0.1% at all locations along the array (Figure 5a).

To investigate the quality of wavefield reconstruction along the receiver array, we determine the SNR for the reconstruction
using different master sensors. Figure 6 shows the SNR of different reconstruction schemes averaged over different master sensors.
In Figure 6, the multi-source reconstruction provides the SNR at every master sensor location, including the locations where
the sensors are absent. By contrast, the single-source reconstructions do not provide the SNR when the master receivers are absent
because as shown by Figure 2, one cannot reconstruct cross-correlated wavefields from missing master receivers using single-source
wavefield reconstructions and thus one cannot provide SNR by comparing the reconstructed and original images of correlograms.
Figure 6 shows that the SNR of the multi-source reconstruction is overall greater than the SNR of the single-source reconstruction
by approximately 20-50 dB.

Using five different realizations of missing receiver locations, we estimate the mean and standard deviation of the SNR for the
different reconstruction schemes. Figure 7 shows the SNR comparison for the different reconstructions for four different fractions
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Figure 4. Available and missing seismic traces used in our wavefield reconstruction examples (Figure 3), shown in yellow and blue, respectively.

of missing receivers. Overall, the SNR of the Fourier multi-source reconstruction is greater than the SNR of the Fourier and
Curvelet single-source reconstructions by approximately 40-60 dB (Figure 7). The wavefield recovery using the Fourier multi-
source reconstruction overall improves the reconstruction of interferometric wavefields compared to the single-source wavefield
reconstructions at different fractions of remaining receivers.

4 DISCUSSION

We show that one can combine seismic interferometry and compressive sensing, which is a signal interpolation technique, to
improve the reconstruction of interferometric wavefields retrieved from interferometry. Our reconstruction of interferometric wave-
fields takes 2 signal processing steps, where cross-correlation interferometry of seismic traces is performed prior to CS reconstruc-
tion of interferometric wavefields.

We propose to perform cross-correlation interferometry prior to CS wavefield recovery because our goal is not to recover noise
but rather the Green’s function itself. The phase spectrum of noisy signals is random (Figure 8a), while the phase spectrum of the
correlated noisy signals is consistent as shown by the arrival at zero time lag for the auto-correlated signal in Figure 8b. In addition,
the time series with the Green’s function are short compared to the time series of the noise that is used to extract the Green’s
function. Thus, reconstruction of random noisy signals is more complicated than reconstruction of their correlations. In this way,
performing wavefield reconstruction after interferometry is preferable. Using the Fourier transform, we compare the computational
efficiency of the CS wavefield reconstruction performed before and after interferometry in the appendix by comparing the number
of the Fourier coefficients associated with the CS reconstruction of noise and cross-correlated wavefields.

When one has two sets of signals A and B where signals in B are processed from signals in A, in some occasions, recon-
structing the processed signals B rather than the direct measurements A may provide more computational efficiency and accurate
signal recovery. For example, Chen et al. (2015) and Ariananda and Leus (2012) directly reconstruct the covariance and power
spectrum estimated from their original measurements by using less complex computation and minimal memory requirements than
reconstructing the original signals before estimating the covariance and power spectrum. The benefits of reconstructing processed
signals rather than the original signals are similar to our work, where the direct reconstruction of the cross-correlated signals is
more efficient than recovering the original seismic profiles before performing the cross-correlation.

In Section 3, we show two ways of reconstructing interferometric wavefields after cross-correlation: single- and multi- source
reconstructions. One can use single-source reconstruction, which uses cross-correlated wavefields provided from a virtual source.
Using SNR as a diagnostic for the quality of wavefield reconstructions, we show in Section 3 that our proposed multi-source
reconstruction, which uses cross-correlated wavefields provided from all available virtual sources, improves the recovery of inter-
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Figure 5. The relative differences (%) between the original wavefield image (Figure 3a) and the reconstructed images using (a) Fourier single-source
reconstruction, (b) Curvelet single-source reconstruction, and (c) Fourier multi-source reconstruction. The colorbar scales of the two single-source
reconstructions are different and much larger than the scale of the multi-source reconstruction.

ferometric wavefields compared to the single-source reconstruction. The Fourier multi-source reconstruction gives higher SNR by
approximately 40-60 dB, compared to the SNR of the Fourier and Curvelet single-source reconstructions.

The CS signal reconstruction depends on the reconstruction method as well as the sparsity and the sampling of signals (Wakin,
2017; Candès and Wakin, 2008). Since we use the same randomly missing patterns of the receiver array for the single- and multi-
source reconstructions, we use a consistent sampling of the signals. Thus, in the reconstruction comparison between the two recon-
struction schemes, the wavefield recovery depends on the signal sparsity and the reconstruction method. Dabov et al. (2007) and
Maggioni et al. (2013) show that by grouping similar data, which are image and volume fragments, into a volume and a tesseract
(4D structure), respectively, one can enhance the sparsity of the data and improve the signal reconstruction and separation of signals
and noise.

The enhancement of signal sparsity by grouping lower-dimensional fragments is similar to our work, where the sparsity of
Fourier coefficients is enhanced when we group 2D images of the correlated wavefields from all virtual sources into a 3D volume,
compared to the sparsity of the Fourier and Curvelet coefficients of a 2D image of the wavefields only from a VS. Figure 9 shows
the absolute value of the Fourier and Curvelet coefficients normalized with the maximum coefficient amplitude against the number
of the coefficients normalized with the total number of coefficients. The normalized Fourier coefficients of the 3D volume grouping
2D images of the interferometric wavefields from all virtual sources decay more rapidly than the decay of the normalized Fourier
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Figure 8. a) Noisy signal bandlimited between 5 and 20 Hz and b) auto-correlation of the noisy signal of a), representing seismic ambient noise and
correlation of ambient noise, respectively.

and Curvelet coefficients of a 2D image from a VS. Thus, the coefficients of a 3D volume are sparser than those of a 2D image,
improving the wavefield reconstruction. Apart from the sparsity enhancement, we speculate that the improvement of wavefield
recovery using the multi-source reconstruction relies on exploiting the redundancy in the correlation that is due to the translational
invariance of the interferometric waveforms. For example, the 5th and 55th master receivers give the same correlation response as
the response provided from the 10th and 60th master receivers.

In addition, reconstructing a 3D volume rather than a 2D image of the interferometric wavefields requires fewer sensors.
For a K-sparse signal of length N , one requires at least M measurements such that M = O(Klog(N/K)) to reconstruct the
signal. Because the sparsity of a 3D volume is greater than the sparsity of a 2D image as shown by the different decay rates of
coefficients in Figure 9, we can lower the requirements of M measurements (number of sensors). In our numerical examples of
20% remaining receivers, the single-source reconstruction recovers 100 virtual shots from 20 virtual shots, using 20% of the full
data for the recovery. By contrast, the multi-source reconstruction recovers the 10000 virtual shots from 400 virtual shots, using 4%
of the full data for the recovery. Thus, the multi-source reconstruction uses fewer relative measurements but gives more accurate
reconstruction quality in term of SNR compared to the single-source reconstruction.

The improvement of wavefield recovery using multi-source reconstruction can be beneficial to applications in passive seismic
explorations. One can apply the reconstruction technique to seismic profiles from existing linear receiver arrays, where some
receivers are absent or malfunctioning. In addition, SI has been applied to seismic data collected from optical fiber networks using
distributed acoustic sensing (DAS) technology to investigate and monitor the subsurface (Dou et al., 2017; Zeng et al., 2017;
Lellouch et al., 2019; Baird et al., 2020; Shragge et al., 2021). Seismic data recorded using DAS fibers are highly sensitive to the
arrival angles of wavefields and the fiber orientation (Shragge et al., 2021; Martin et al., 2021). Thus, the signals recorded from some
parts of DAS fibers may be inadequate in signal quality and be discarded from subsequent signal processing steps. One can apply
the multi-source reconstruction to mitigate the sensitivity limitation of DAS fibers by reconstructing the interferometric wavefields
for the DAS sensors where inadequate-quality signals are recorded.
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Figure 9. Decay of the Fourier and Curvelet coefficients. The graph shows the coefficient amplitudes normalized by the maximum amplitude of the
coefficients across the number of the coefficients normalized by the maximum number of coefficients.

5 CONCLUSION

We implement a two-stage signal reconstruction, where compressive sensing is performed after cross-correlation interferometry
of seismic wavefields. Using the Fourier and Curvelet transforms, we exploit the sparsity of interferometric wavefields for CS
reconstruction of correlograms from a linear seismic array. We propose a technique called multi-source wavefield reconstruction
to reconstruct interferometric wavefield by combining interferometry with compressive sensing. The multi-source method uses
interferometric wavefields provided from all available virtual sources to fill the gaps of seismic correlation profiles. Our multi-
source method is an alternative improvement of wavefield reconstruction, compared to the traditional single-source method that
uses interferometric wavefields provided only from a VS to fill the gaps. The Fourier multi-source reconstruction improves the
quality of recovered interferometric wavefields compared to the Fourier and Curvelet single-source reconstruction by a considerable
SNR difference of approximately 50 dB. One can apply the multi-source method to recover missing seismic correlation profiles
recorded from seismic receiver arrays where some receivers are absent, inoperative, or restricted for installation.
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7 DATAAVAILABILITY

The numerical data and CS reconstruction used in this article are processed using steps and methods described in Section 2 and
can be personally requested through P Saengduean. The code for the discrete Curvelet transform with wedge wrapping is available
from the Curvelab group at http://curvelet.org/ (Candès et al., 2006).
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Example Method
Number of the Fourier coefficients
associated with CS reconstruction

Ambient noise interferometry
Conventional S x N x Ws
Our method s x N x N

Active-source interferometry
Conventional S x N x Ns
Our method s x N x N

Table 1. The number of the Fourier coefficients associated with CS wavefield reconstruction when the reconstruction of seismic wavefields is
performed prior to interferometry (conventional method) and the reconstruction is performed after interferometry (our suggested methods). Both
methods are carried out for ambient-noise and active-source examples.

Appendix: Fourier coefficients associated with SI and CS

In Section 4, we argue that directly reconstructing correlograms is more efficient than reconstructing original seismic waves prior
to performing cross-correlation interferometry of seismic wavefields. Here, we use the Fourier transform to compare the number
of the Fourier coefficients associated with CS when 1) one reconstructs seismic wavefields before performing SI (conventional
method) and 2) one cross-correlates wavefields before performing CS reconstruction of the interferometric wavefields (our sug-
gested method). These numbers of Fourier coefficients associated with CS reconstruction enable comparison of the computational
efficiency.

We use interferometric wavefields from ambient noise and active-source interferometry for our comparison of the Fourier
coefficients. For ambient noise interferometry, the associated coefficients are the length of a noise window in samples (S), number
of noise windows (Ws), and the number of receiver from the dense array (N). For active-source interferometry, the coefficients are
the length of signals (S), number of sources (Ns), and the number of receivers from the dense array (N).

Table 1 shows the required number of Fourier coefficients for the conventional and our suggested methods. When the number
of noise windows (Ws) in ambient noise interferometry and the number of sources (Ns) in active-source interferometry are much
greater than the number of receivers from the dense array (N), the number of Fourier coefficients required for the CS reconstruction
of our suggested method are smaller than the number of coefficients required for the conventional method. Note that the Fourier
coefficients shown in Table 1 are the total number of coefficients associated with the wavefield reconstruction and are not the same
as the number of computational operations such as the fast Fourier transform. In addition, rather than reconstructing the whole time
windows of noise wavefields (Figure 8a), the window of the correlation of signals (Figure 8b) that we reconstruct can be shorter
compared to the window of noise wavefields, where the length of this shorter time window is s and s < S (Table 1). Thus, our
method of directly reconstructing correlograms involves fewer Fourier coefficients and shorter time windows than reconstructing
seismic wavefields before performing interferometry, allowing better computational efficiency.


