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ABSTRACT
Marine vibrators are emerging as an attractive alternative to conventional air-guns in
ocean-bottom acquisition due to their ability to generate low-frequency waves and to
limit negative impacts on marine wildlife. Using marine vibrators introduces chal-
lenges not found in conventional air-gun-based acquisition, including handling phe-
nomena associated with the Doppler effect due to the source motion and time-dependent
source-receiver offsets when receivers are placed on the ocean bottom. Standard seis-
mic data processing solutions assume stationary sources and receivers; however, ac-
curately accounting for source motion effects in processing is critical for optimal sub-
surface imaging. To address these challenges, we develop a finite-difference approach
for modeling full acoustic wavefields in a generalized coordinate system that tracks
the moving source. Synthetic examples demonstrate that this technique has the abil-
ity to accurately and stably model high-velocity moving sources, and account for the
wavefield distortion predicted by Doppler theory. This approach is not limited to un-
derstanding wavefield propagation for a moving source and can be used to develop
other advanced processing techniques for marine vibrator data.

Key words: Marine vibrator, modeling, marine acquisition

1 INTRODUCTION

Environmental concerns about conventional marine impulsive sources (i.e., air-guns) make a transition to environmentally friendly
marine vibrators likely in the near future. Non-impulsive marine sources (i.e., marine vibrators) are viable alternatives to air-guns.
They are not just advantageous for environmental reasons, but also have geophysics-related merits. From a seismic exploration
perspective, marine vibrators provide more low-frequency content than air-guns (Guitton et al., 2021), and enable simultaneous
acquisition by blending phase-encoded sources (Laws et al., 2019). However, processing and imaging challenges emerge because
of the motion and long duration of the marine vibrator signal, including Doppler effects and time-dependent source-receiver offsets
in ocean-bottom acquisition. Even though marine vibrators move at a much slower velocity than the subsurface sound speed,
source motion introduces a noticeable offset- and time-dependent frequency shift to the data (Dragoset, 1988; Schultz et al., 1989;
Hampson and Jakubowicz, 1995). Further, phase distortion also occurs in seismic signals and is proportional to the source velocity
and time slope of seismic events.

Current seismic data processing workflows usually assume stationary and impulsive sources in marine acquisition. Develop-
ing appropriate processing workflows for data acquired using moving sources requires accurate modeling of the associated effects.
Numerical solutions to the wave equation form the basis of many geophysical applications such as imaging and inversion, and
are necessary to study and understand wave propagation under realistic acquisition conditions (e.g., dynamic sea surfaces and/or
moving sources). Further, numerical solutions assist in designing proper processing workflows and are necessary to validate pro-
cessing solutions. Accurate modeling of seismic wavefields remains a key element in advanced seismic imagining and inversion
techniques, such as reverse-time migration (RTM) and full-waveform inversion (FWI). Various methods are proposed in the liter-
ature to model marine vibrator data. Dellinger and Dı́az (2020) present a segmentation-deconvolution approach to model mobile
sources. JafarGandomi and Grion (2021) model marine vibrator data by interpolating unaliased impulsive sources data to desired
source locations and convolving with the vibrator sweep. Duquet et al. (2021) use finite differences (FD) to model source motion
by moving and interpolating the source injection locations in space as a function of time. Conventional Cartesian-based modeling
methods are susceptible to numerical instabilities and modeling inaccuracies when introducing irregular or dynamic computational
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geometries (e.g., time-varying sea surfaces). More challenges arise when implementing free-surface boundary conditions for such
irregular geometries in a Cartesian coordinate system.

In this paper, we present a finite-difference approach to model the full acoustic wavefield triggered by a mobile source in
a generalized coordinate system that effectively embeds source motion into the coefficients of the governing tensorial acoustic
wave equation. Shragge (2014) and Shragge and Tapley (2017) present a time-invariant tensorial representation of the acoustic
wave equation (AWE) in a generalized coordinate system. This approach facilitates coordinate transformation to map the irregular
physical domain to a regular computational domain, enabling FD modeling. Konuk and Shragge (2020) extend this technique to
address the challenge of dynamic sea surfaces by specifying a time-variant 4D coordinate transformation. This extension leads to
a time-varying mesh grid in physical Cartesian coordinates, but a stationary mesh grid in a generalized computational coordinate
system.

Here, we solve the AWE for a time-varying mesh without a need for repeated velocity model interpolation, eliminating the
added computational complexity and accuracy issues associated with this operation. In this framework, the time-varying physical
Cartesian domain horizontally shears conformal with source motion. However, the computational domain is fixed in time with time-
and space-dependent partial differential operator coefficients. The developed approach is not limited to modeling moving sources
with ocean-bottom receivers, and is applicable for conventional towed-streamer scenarios.

2 THEORY

2.1 Tensorial acoustic wave equation

The 4D tensorial AWE in a generalized coordinate system defined by the variables ξ =
[
ξ0, ξ1, ξ2, ξ3

]
is (Konuk and Shragge,

2020)

□ξPξ = Fξ, (1)

where □ξ is the generalized d’Alembert operator, Pξ is the pressure field, and Fξ is the source function. The ξ0 coordinate is time
and ξ1, ξ2, ξ3 are space components. The generalized d’Alembert operator is

□ξ =
−1√
|g|

∂

∂ξµ

(√
|g|gµν ∂

∂ξν

)
, µ, ν = 0, · · · , 3, (2)

where [gµν ] is a symmetric rank-two contravariant metric tensor, |g| is the determinant of the covariant metric tensor [gµν ], and
[gµν ] = [gµν ]−1. Here, we use superscript indices for components with a contravariant representation, and subscript indices
for components with a covariant representation. In Cartesian coordinates with variables x =

[
x0, x1, x2, x3

]
= [t, x, y, z], the

d’Alembert operator (equation 2) reduces to

□ =
−1

c2
∂2

∂t2
+∇2, (3)

where c = c(x) is the Cartesian medium velocity, and ∇2 is the 3D Cartesian Laplacian operator. The covariant metric tensor
relates the generalized coordinate geometry to an equivalent Cartesian coordinate system representation with elements given by

gµν =
∂xi

∂ξµ
∂xi

∂ξν
for i, µ, ν = 0, · · · , 3, (4)

where repeated indices imply summation. The columns of the contravariant and covariant metric tensors form dual bases (i.e., the
dot product ⟨gi , g

j⟩ = δij).
To simulate wavefields triggered by a moving source, we set the generalized AWE in arbitrary coordinates and then choose a

coordinate transformation that maps a horizontally deformed physical domain to a regular computational domain. To simplify the
4D coordinate transformation, we make a set of plausible assumptions: (1) no stretching of the time coordinate occurs, i.e. x0 = ξ0

(or t = τ ); (2) the horizontal source movement is along the ξ1-axis only, leaving the ξ2-axis unchanged (i.e., x2 = ξ2); (3) the
source moves at a fixed depth level (i.e., there is no vertical motion and thus x3 = ξ3); (4) the source moves at a constant velocity
(i.e., ∂v

∂ξ0
= 0); and (5) the source moves in a homogeneous fluid medium. The first four assumptions allow us to express the

horizontal mesh deformation x1 = T
(
ξ0, ξ1, ξ2, ξ3

)
, where T is any arbitrary horizontal deformation function that depends on

all variables
(
ξ0, ξ1, ξ2, ξ3

)
. Recognizing that ξ0 ≡ cτ and ∂

∂ξ0
= 1

c
∂
∂τ

, the generalized d’Alembert operator (equation 2) for an
arbitrarily deformed mesh along the ξ1-axis reduces to the second-order AWE
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Figure 1. (a) Physical and (b) computational domains. The red dot indicates the source location. The blue mesh represents a homogeneous region,
whereas the black mesh represents a variable velocity region.

where Tk = ∂T
∂ξk

, and i, j = 1, 2, 3 are spatial indices. The assumptions stated above allow us to express the relationship between
the ξ- and x-coordinate systems as 

x0

x1

x2

x3

 =


ξ0

ξ1 + vξ0eγ(sz−ξ3)

ξ2

ξ3

 , (6)

where v is the source velocity, γ is a user-defined decay factor that controls the amount of horizontal deformation as function of
depth, and sz is the source depth. By introducing a depth-dependent horizontal deformation, we confine the time-varying mesh
deformation to the homogeneous water layer. This coordinate transformation enables the modeling of a moving source without the
need for velocity model interpolation at each time-step. Figure 1a and 1b show a deformed physical domain in Cartesian coordinates
and the fixed computational domain in a generalized coordinate system, respectively. At the initial time, the computational and
physical domains are identical (i.e., x1 = ξ1). Extending this approach to include a moving source with a time-dependent velocity,
i.e. v → v(ξ0), is straightforward.

2.2 Doppler effect

In a constant velocity medium, the source motion causes time-dependent frequency shifts in the data given by

f(t) =
c

c− v cos(θ(t))
f◦(t), (7)

where f(t) is the time-dependent observed frequency, c is the speed of sound in the medium, v is the source speed, θ(t) is the time-
dependant angle between the source and receiver or a scatterer point (Figure 2a), and f◦(t) is the time-dependent input frequency.

For heterogeneous media, the ray paths from sources to scattering points play a role in the amount of frequency shifts. To
derive an expression for the frequency change due to source motion in heterogeneous media, we follow the formulation of Kolano
(1978). We consider a moving source with velocity v and a stationary point in the subsurface (Figure 2b). We assume that the source
at time t = 0 s is at S1 and after a time interval ∆t it is at S2 (∆t = ∆x

v
). If the source emits two pulses, one at each location, the

time delay between emitting these pulses is ∆t. The ray paths the two pulses take to arrive at the same location R are P1 and P2,
with the associated travel times T1 and T2, respectively. The time delay between the two pulses at R is

∆τ = ∆t+ T2 − T1 = ∆t−∆T, (8)

where ∆T = T1 − T2. Considering the source emitting continuously when moving from S1 to S2, and because the total number
of emitted cycles matches the total number of observed cycles, we have

f◦∆t = f∆τ, (9)

where f◦ and f are the emitted and observed frequencies, respectively. Thus, the frequency shift is

∆f =
∆T

∆τ
f◦ =

∆T

∆t−∆T
f◦, (10)

which reduces to

∆f ≈ ∆T

∆t
f◦ (11)
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Figure 2. Schematic plot of (a) source motion direction (S⃗) relative to a stationary receiver or a scatterer point location (R⃗) in a constant velocity
medium, and (b) a source moving from S1 to S2 with ray paths from source locations S1 and S2 to a point R in the subsurface is given by P1 and
P2, respectively, in a variable velocity medium.

for ∆T
∆t

≪ 1, i.e. the source velocity is much slower than the speed of sound. As ∆t approaches zero,

∆f = lim
∆t→0

T2 − T1

∆t
f◦ = lim

∆t→0

−∆T

∆t
f◦ = −dT

dt
f◦. (12)

Equation 12 shows that the Doppler effect in heterogeneous media is related to the material property along the ray path from the
source to any point of interest in the subsurface. A more detailed treatment of the Doppler effect in complex media (e.g., anisotropic
media) is commonly found in the physics literature concerning with radio waves propagating through the ionosphere (e.g., Weekes,
1958; Davies, 1965; Bennett, 1968).

3 NUMERICAL IMPLEMENTATION

We use a finite-difference approach to numerically solve the second-order acoustic wave equation (equation 5), i.e., using Taylor-
expansion coefficients to approximate the partial differential operators. The numerical scheme uses approximations of order O(∆ξ2)

for second-order partial differential operators and first-order spatial partial differential operators, and of order O(∆ξ) for first-order
temporal partial differential operators; however, using higher-order spatial approximations is possible. Implementing the second-
order AWE permits modeling moving sources using a standard Cartesian-based AWE with relatively minor modifications. Synthetic
examples show that the numerical scheme is stable and sufficiently accurate.

4 NUMERICAL EXAMPLES

4.1 Modeling in homogeneous media

In horizontally invariant media, one can set γ = 0 in equation 6, reducing the mesh deformation to a pure horizontal translation
along the source motion direction. A positive (negative) velocity translates the mesh along the positive (negative) ξ1 axis. To
demonstrate the robustness of the developed approach and highlight the consequences of source motion on seismic data, we use
an unrealistically fast source velocity of 0.5 km/s in a homogeneous medium. We simulate a 2D acoustic wavefield in a constant
velocity medium of 1.5 km/s using a 20 Hz monochromatic sine wave. The source at time t = 0 s is at the location x1 = 2.0 km
(i.e., ξ1 = 2.0 km). Figure 3a shows a snapshot at t = 0.8 s computed using the developed approach and interpolated to the
Cartesian coordinate system. The right-going waves (i.e., along the source movement direction) are compressed, whereas the waves
traveling in the opposite direction are dilated, according to the Doppler effect. The amount of compression or dilation is a function
of the source velocity, the acoustic wavespeed in the medium, the source motion direction, the propagation direction, and the input
frequency.

Figure 3b shows a shot gather recorded using stationary receivers placed 12.5 m below the source. The apices of the direct
arrivals are shifted because of the source motion, and the lateral shift increases with time. Traces recorded to the right of the source
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Figure 3. (a) Wavefield snapshot at t = 0.8 s. The left-going waves (opposite of the source movement direction) are dilated, whereas the right-
going waves are compressed, demonstrating the Doppler effect due to source motion. (b) Shot gather of direct arrivals for stationary receivers
located 12.5 m below the source.

Figure 4. (a) Source function, and (b) and (c) are traces recorded at x = 2.0 km and x = 2.37 km, respectively. (d) Amplitude spectrum of the
source function, and (e) and (f) amplitude spectra of the traces shown in (b) and (c), respectively.

are shifted to a higher frequency, while the traces recorded to the left of the source are shifted to a lower frequency. For a scattered
wavefield, frequency shifts are independent of the receiver locations relative to the source. In other words, for a scattered wavefield
due to a scatterer, frequency shifts are a function of source velocity and motion relative to the scatterer point.

Figures 4b and 4c show two traces for stationary receivers at x1 = 2.0 km and x1 = 2.37 km, respectively. Although the
input source (Figure 4a) is a 20 Hz monochromatic wave (Figure 4d), the trace to the right of the source is compressed compared to
that to the left. The amplitude spectra of the two traces (Figures 4b and 4c) indicate that the observed frequency at the right receiver
is ∼ 30 Hz, whereas the observed frequency at the left receiver is ∼ 15 Hz. The theoretical observed frequencies using the Doppler
(1842) formula agree with our numerical results.

4.2 Modeling in heterogeneous media

To examine source motion effects on seismic acquisition in heterogeneous media, we simulate the acoustic wavefield using the
Marmousi II model. We use a source located at [ξ1, ξ3] = [8.0, 0.0125] km and 721 receivers at ξ3 = x3 = 0.5 km with a
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(a) (b) (c)

Figure 5. Shot gather acquired using (a) moving and (b) stationary sources. (c) Difference between the data shown in (a) and (b).

uniform 12.5 m spacing. We use a fast source velocity of 25 m/s to emphasize the discrepancies between a stationary and a moving
source. The source function is a linear sweep from 16 Hz to 34 Hz. Figure 5a and 5b show shot gathers acquired using moving
and stationary sources, respectively. As expected, the source motion has a significant effect on seismic data (Figure 5c). Although
the two gathers exhibit similar characters, they differ significantly in both amplitude and phase (Figure 5c). For a slower source
velocity, the differences are likely to be negligible for low frequencies; however, at high frequencies or for fast boat velocities, the
source motion introduces artifacts if not properly taken into consideration in the processing workflow (Guitton et al., 2021).

Figure 6 shows traces from stationary and mobile acquisition correlated with the sweep. Here, we consider the case of correlat-
ing the sweep with traces from stationary acquisition as the reference. Correlating the sweep with near-offset traces from stationary
and mobile acquisition produces similar results (Figure 6a). However, correlating the sweep with far-offset traces shows that a 1D
assumption for correlation is no longer valid (Figure 6b). If source motion effects are not taken into consideration, correlating (or
deconvolving) recorded data with the sweep causes artifacts in the processed data. Source movement poses other data processing
and imaging challenges, that introduce interpretation uncertainties, as explained in a companion report.

5 DISCUSSION

Source motion introduces frequency shifts proportional to the boat velocity, acoustic wave velocity in the medium, propagation
direction, and input frequency. The frequency shifts in the modeled seismic data are more noticeable at high frequencies, even with
a slow source velocity. Neglecting frequency shifts and the time-dependent source-receiver offset in seismic data processing and
imaging introduces significant artifacts in the processed data and ensuing imaging and/or inversion workflows. Although source
motion causes noticeable frequency shifts in data, a change in source position when emitting is expected to have a more significant
impact on seismic processing and imaging. Also, one can expect the source motion effects to be more significant for shallow targets
than deep targets (Almuteri et al., 2022), and on far-offset traces than near-offset traces.

Our numerical results show that solving the second-order acoustic wave equation using a finite-difference approach with
Taylor-expansion coefficients is accurate and stable. Adopting such an approach enables obtaining reliable subsurface images and
reduces interpretation uncertainties. Although time-dependent meshes require repeated and expensive interpolation of the physical
properties of the subsurface, the proposed work mitigates the need for such interpolations by using a judicious coordinate trans-
formation to confine the mesh deformation to the homogeneous water layer. Also, the proposed methodology would help improve
marine acquisition design and processing workflows by providing reliable and robust tools for numerical experimentation.

In conventional marine acquisition, source-side ghost reflections are described by an effective static sea surface (Blacquière
and Sertlek, 2019), i.e. they occur instantaneously. However, for moving and long-emitting sources, source-side ghost reflections are
explained using a dynamic sea surface model. Understanding the effects ghost reflections have on marine vibrator data is critical
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Figure 6. Traces recorded at receivers positioned at (a) x=8.5 km and (b) x=11 km. Blue and red traces are from stationary (Figure 5b) and mobile
(Figure 5a) acquisition, respectively.

for developing robust seismic deghosting solutions for this type of acquisition. Therefore, future work involves incorporating a
dynamic sea surface to mimic more realistic marine vibrator acquisition scenarios.

6 CONCLUSIONS

We present a finite-difference approach for solving the acoustic wave equation to simulate marine vibrator data. The developed
method employs a geometric coordinate transformation to compute the full acoustic wavefield in a uniformly spaced and time-
invariant mesh grid. Although our implementation assumes a source moving with a constant velocity, incorporating a variable
velocity moving source in this framework is straightforward. The proposed numerical approach can accurately and stably model
seismic wavefields even at unrealistically high velocities of the moving source. Further, this work is not limited to modeling marine
vibrators, but can also be used to model towed-streamer data.
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