
MINES.EDU

Python for HPC – Day 3

April 14, 2022

Presented by:
Nicholas A. Danes, PhD
Computational Scientist
Cyber Infrastructure & Advanced Research Computing (ITS)

MINES.EDU

Goals
• Spotlight advanced Python capacities for scientific computing

• Profiling & Optimizing Python code
• Exploring when (and when not to use) NumPy compared to:

• Pure Python
• Cython
• Numba

• Other ways to optimize your code
• Shared vs Distributed memory computing
• Mpi4py
• Petsc4py

MINES.EDU

Note: Optimization before Parallelization!

• “Premature optimization is the root of all evil” – Donald Knuth

• Often, writing your code to run as fast as possible (within reason)
with a single core is necessary before thinking about
parallelization.

• We will explore optimize with a simple Python code for a single
core next!

MINES.EDU

How to profile Python code
• cProfile

• Gives you a breakdown of all functions’ runtime in a code
• Multiple ways to use it:

• Call it in the command line:
$ python –m cProfile myscript.py

• Call it in another script:

• Other options: lineprofiler, timeit, pstats

References: https://towardsdatascience.com/how-to-profile-your-code-in-python-e70c834fad89
https://github.com/pyutils/line_profiler

import cProfile

cProfile.run(”mycode.main()")

https://towardsdatascience.com/how-to-profile-your-code-in-python-e70c834fad89
https://github.com/pyutils/line_profiler

MINES.EDU

A starting point for optimization:
Writing an ODE solver
Consider the initial value problem of the form:

which can numerically solved using Heun’s Method:

Where ℎ is the time step size, 𝑖 is the time step index, and #𝑦 denotes the intermediate
solution. Let’s use this problem to see how to optimize writing scientific code for Python!

𝑦% 𝑡 = 𝑓 𝑡, 𝑦
𝑦(𝑡&) = 𝑦&

(𝑦[()*] = 𝑦[(] + ℎ 𝑓 𝑡[(], 𝑦[(]

𝑦[()*] = 𝑦[(] +
ℎ
2

𝑓 𝑡[(], 𝑦[(] + 𝑓 𝑡[()*], (𝑦[()*]

MINES.EDU

Demo: Profiling multiple versions of our ODE code
• Pure Python

• Surprisingly Performant!
• NumPy only

• Performs poorly due to lack of vectorization
• NumPy + Numba

• https://numba.pydata.org/
• Numba is a JIT-compiler that converts a subset of NumPy + Python code into

fast machine code
• Performs better than NumPy

• NumPy + Cython
• https://cython.org/
• Cython effectively allows one to write static-typed code in Python/”Cython”,

which is parsed into C and compiled into a Python module.

https://numba.pydata.org/
https://cython.org/

MINES.EDU

Other ways to think about optimizing scientific
Python code
• NumPy

• Check for vectorization possibilities!
• Use v[0:n] = np.sin(x[0:n]) instead of

for i in range(0,n):
v[i] = np.sin(x[i]))

• Numba
• Explore when you can use the JIT compiler

• Will not be compatible with non-NumPy/Python functions and some NumPy/Python functions
• When possible, use sparse data structures!

• SciPy provides these!
• If you have to write a loop, use another language and/or wrap it to your Python code

• Cython
• F2py (Fortran) - https://numpy.org/doc/stable/f2py/usage.html
• Pybind11 (C++) - https://github.com/pybind/pybind11

https://numpy.org/doc/stable/f2py/usage.html
https://github.com/pybind/pybind11

MINES.EDU

Parallel Programming in Python
• Shared vs Distributed Memory Programming

• Shared (e.g. OpenMP)
• All CPU cores have access to the same pool of

memory
• Typically, all CPU cores are on the same CPU node
• Ideal for multi-threaded loops

• Distributed-memory program (e.g. MPI)
• Each CPU core is given access to a specific pool of

memory, which may or may not be shared
• A “communicator” designates how each CPU core

can talk to another CPU core
• CPU cores do not have to live on the same CPU node

MINES.EDU

Python and the GIL: A constraint on shared memory
programming
• Python Global Interpreter Lock (GIL)

• A mechanism with Python which allows only one CPU thread to use the
Python interpreter

• The GIL addressed the problem of memory management for Python
programs.

• Releasing the GIL can cause memory leaks if not managed correctly.
• Solutions:

• Use multiprocessing instead of multithreading
• Each process gets its own Python interpreter and memory space
• Module options: mpi4py, multiprocessing

• Use a different interpreter
• Use Cython to release the GIL to allow multithreading within subroutines

Reference: https://realpython.com/python-gil/

https://realpython.com/python-gil/

MINES.EDU

A brief introduction to mpi4py:

• mpi4py provides bindings for the Message Passing Interface
(MPI) for Python

• MPI is a library that provides the ability for processors to
communicate and send/receive data to one another, while
simultaneously running concurrently in a computation

• Most parallel scientific codes use MPI for their parallelism
• Some codes allow a “hybrid” approach which allows one to

combine MPI (multiprocessing) and OpenMP (multithreading)
into a single code

Reference: https://realpython.com/python-gil/

https://realpython.com/python-gil/

MINES.EDU

A brief introduction to petsc4py:
• PETSc (Portable Extensible Toolkit for Scientific Computation) is

a software suite of data structures, solvers and other routines for
scalable (e.g. parallel) scientific computing

• Petsc4py is a C-wrapped library to use PETSc in Python
• Compatible with mpi4py for distributed memory communication

• Used in some popular scientific packages such as FEniCS

Reference: https://www.mcs.anl.gov/petsc/petsc4py-current/docs/apiref/index.html

https://www.mcs.anl.gov/petsc/petsc4py-current/docs/apiref/index.html

MINES.EDU

Demo: Setup mpi4py and petsc4py in a conda env
• Note: For best performance, do NOT use conda’s binary

package version of mpi4py

• To setup mpi4py to use the system’s MPI see:
https://researchcomputing.princeton.edu/mpi4py

• We will showcase a demo code that uses both petsc4py and
mpi4py

• MPI “Hello World”: https://researchcomputing.princeton.edu/mpi4py
• petsc4py 2D Poisson: https://gitlab.com/petsc/petsc/-

/blob/master/src/binding/petsc4py/demo/poisson2d/poisson2d.py

https://researchcomputing.princeton.edu/mpi4py
https://researchcomputing.princeton.edu/mpi4py
https://gitlab.com/petsc/petsc/-/blob/master/src/binding/petsc4py/demo/poisson2d/poisson2d.py

MINES.EDU

Further Resources

Python Parallel Processing
https://wiki.python.org/moin/ParallelProcessing

Parallel Programming with MPI for Python
https://rabernat.github.io/research_computing/parallel-programming-with-
mpi-for-python.html

Intro to F2Py
https://www2.atmos.umd.edu/~dkleist/docs/pythonTraining/Slides/F2Py_S
SSO.pdf

https://wiki.python.org/moin/ParallelProcessing
https://rabernat.github.io/research_computing/parallel-programming-with-mpi-for-python.html
https://www2.atmos.umd.edu/~dkleist/docs/pythonTraining/Slides/F2Py_SSSO.pdf

