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ABSTRACT 

Velocity model determination on the Marmousi data is a major challenge for 

current velocity analysis methods because of the extreme complexity of the model. 

A new velocity analysis method has been developed and is tested on the Marmousi 

data. This method characterizes a velocity distribution by the macro model and 

uses an analytical formula to update velocity. Our formula estimates the update 

in velocity by computing a derivative function of imaged depths with respect to 

velocity in a general background medium context. This formula is more accurate 
than conventional ones based on hyperbolic residual moveout when the medium 
has strongly lateral velocity variations. The test results show our velocity analysis 

method to be superior for complex media such as in the Marmousi model.       

INTRODUCTION 

The Marmousi model is a 2D model with considerable complexity of structures 

and a realistic distribution of reflectors. Prestack data from it provide a stiff challenge 

to methods for estimating velocities from seismic data. 

Strong velocity variations in the Marmousi model suggest that the method for 
velocity estimation should not be based on the assumption of hyperbolic residual 
moveout. Liu and Bleistein (1994) proposed an approach to migration velocity anal- 
ysis that characterizes a velocity distribution by using the macro model—consisting 
of velocities and velocity interfaces. The model is determined by layer-stripping, in a 
top-down procedure; the velocity of each layer (assumed constant or constant gradi- 

ent) is updated iteratively by using an analytical formula; and the velocity interface 
is imaged by using the corrected velocity. In order to handle nonhyperbolic residual 
moveout, the velocity estimation in the proposed formula is implemented by com- 

puting a derivative function of imaged depths with respect to velocity in a general 

context of the background medium. This derivative function can be calculated by 
using the ratio of two migration outputs. This ratio yields the stationary value of the 

expression for the derivative function—exactly the result we need. This is the same
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method as is used in Bleistein, et al., (1987) to compute the cosine of the incident 
angle at a reflector. 

The efficiency of a velocity analysis approach surely depends on the choice of mi- 

gration algorithm used. In general, integral-type migration approaches, such as Kirch- 

hoff or Gaussian beam, are preferable, because those methods can be implemented 

either in common-shot gathers or in common-offset gathers, and have the flexibility to 

image the targeted structures in which velocity is being estimated. Besides efficiency, 

accuracy should be considered as well. For imaging complex structures, a migration 
algorithm should be designed to handle turning waves and caustic regions. 

In the Kirchhoff integral, traveltime calculation by ray tracing or finite differencing 

dominates the total cost. Finite differencing calculates only the first-arrival travel- 

time, so this approach works fast but fails in calculation of major-energy traveltimes 

in caustic regions (Geoltrain and Brac, 1993). The paraxial ray method, in contrast, 

shows advantages in handling multivalued traveltimes and caustics. This method uses 

information from the standard dynamic ray-tracing method to extrapolate traveltimes 

and ray amplitudes at receivers in the vicinity of a central ray (Beydoun and Keho, 

1987). However, the traveltime calculation by the paraxial ray tracer is generally 

more costly than that by finite differencing. Here, finite differencing is initially used 

in the migration implementation for velocity analysis in the area of the Marmousi 

model where the first arrivals carry the major energy. In the central bottom parts, 

a paraxial ray tracing algorithm is used to implement Kirchhoff migration. In this 

approach, the traveltime corresponding to the major energy is chosen when multiple 
arrivals exist. 

METHODOLOGY 

If an incorrect velocity is used in prestack migration, the imaged depths from 

different offsets in a common-image-gather(CIG) will differ from each other. A CIG 
is a gather in which migrated traces have the same lateral image location. In this 

situation, a residual moveout is observed in migrated data. The principle of velocity 

analysis is to correct the velocity so that the imaged depths at each common-image- 

gather are close to each other. For this purpose, one needs a quantitative relationship 
between the residual moveout and the velocity error. Here, we present a representa- 

tion for residual moveout derived by using a perturbation method. This representation 
is valid for any offset, reflector dip and velocity distribution. 

Perturbation formula for velocity estimation 

We denote by x a 2-D vector, 2 = (x, z). Let x, be the source position and z, be 
the receiver position on the surface. For any point X below the surface, 7,(r,,2) or 
T,(#, x,), respectively, denote traveltimes from x, to x, or & to Z,. 

Suppose we know the total reflection travetime function t(y, h) (therefore, 0t/Oy) 
that depends on midpoint y and half-offset h. Given a velocity function v(z, z), then, 
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for each h, the reflector is determined by 

    

T,(%3,2) + 7,(x,2,) =t(y, h), (1) 

OT, | OT, _ Ot 

dy © dy dy’ @) 
In a common image gather, the imaged depth z can be determined as a function of 
h. If the migration velocity equals the true velocity, then the imaged depth z will be 
independent of offset h; otherwise—for incorrect velocity—z varies with offset h. Con- 

sequently, the imaged depths in common image gathers (CIGs) provide information 
on velocity distribution. 

Equations (1) and (2) are valid even if the migration velocity is wrong. The 
dependency of traveltime on velocity in equations (1) and (2) implies that this equa- 
tion system displays a general relationship between the imaged depth and migration 
velocity. However, this equation system is nonlinear, making it difficult to solve di- 
rectly for velocity. Here, we use a mathematical tool—perturbation—to linearize this 
equation system by considering for all perturbations in model parameters. 

Suppose that the velocity distribution v is characterized by a parameter or a family 
of parameters, i, 

v = v(a;X). 

For example, when v(x; A) = vp + az + bz, is any set of one to three parameters 

chosen from vp, a, and b. Thus, the problem of velocity estimation becomes a problem 

of parameter estimation. If there is a small perturbation 6\ = A* — \ between the 

true parameter and the parameter used in migration, then the imaged depth will have 

a corresponding perturbation 

6z = g(x, h)dX. (3) 

The derivative function g can be determined based on equations (1) and (2). To 
simplify the derivation, we suppose that 2 is just a single parameter at first. 

For a fixed image location x, we differentiate equation (1) with respect to A. Note 
that y and z are functions of 4; then 

Or, , Or dy Or, | OT, + Ors | OT dz _ ot dy (4) 
Oy Oy| dr OX AX Oz Oz} dd Oydr 

By using equation (2), the first term of the left side in equation (4) is balanced by 
the right-hand term. Therefore, 

oe Z| dz Or, OF, 

  
  

—~4 27) ~_7s_ at 5 dz Oz| dx Od ON () 
Let 6, or 6, be the angle between the raypath from the source or the receiver, and 
the vertical at x; then 

OT; cos 6, OT,  cosé, a (6) Oz ~— v(a;A)’ Oz u(@;)’
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By using the above equation, equation (5) is rewritten as 

cos@, + cos@, dz _ 97, OT, (7) 

v(@3\) dA AA AX 

Thus the derivative of imaged depth with respect to \ is found by 

OT, . OF, v(a; A) 
g(x, h) --|Fe4 5; | (8) 

The function g characterizes the relationship between the imaged depth and the 

migration velocity in a general medium context. The computation of this function 

will result in a new migration velocity analysis method, compared to conventional 

ones based on hyperbolic residual moveout. 

  

cos 6, + cos 6, 

The velocity estimation based on equation (3) has no limitation in velocity dis- 
tribution and reflection geometry as long as the perturbation is small. When the 
velocity distribution is characterized by multiple parameters, A = (Ai, Ae, «--, An)?, 
the imaged-depth perturbation will depend on the perturbations of all these param- 

eters. Therefore, equation (3) will be modified to 

n Oz n 

62z(z,h) = S> prom = > gi(z, hdr, (9) 
i=1 : i=1 

where each derivative function is calculated by 

_ OT, OT, v(z; d) 
gi(z, h) =- Se + | cos 8, + cos 0, 

  (10) 

Calculation of the function g 

The function g(y, h), which involves the derivatives of traveltimes with respect to 

the parameter , can be calculated by 

aa = I < (xe) dL, (11) 

where L is the raypath from the source (or receiver) to the image point «. 

For each source or receiver, 07/0 can be determined from equation (11). There- 
fore, given an image point x and a specular source-receiver pair x, and z,, one can 
calculate g from formula (8). However, there is no explicit formula to represent the 

specular source-receiver pair from the image point for a complex medium. To solve 
this problem, we use the Kirchhoff integral to calculate g. In the Kirchhoff summation, 
we calculate two migration outputs which have the same phase but different ampli- 
tudes. One uses the original amplitude; the other one uses the original amplitude 

multiplied by the quantity g. Thus, the ratio of the amplitudes of these two outputs 

will evaluate g at the specular source-receiver position without requiring knowledge of 

the specular source-receiver pair. This technique, based on stationary-phase analysis, 

is the same as was used to determine the angle of reflection in Kirchhoff inversion 
(Bleistein et al., 1987).
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Characterization of velocity distribution 

Although equation (9) holds for any velocity distribution, the solution will be 

underdetermined and unstable if too many unknown parameters are involved. Con- 

sequently, it is essential to characterize the velocity distribution by choosing only 

a few appropriate parameters. Conventionally, one assumes that a velocity model 

consists of the construction of the macro-model (constant velocities and velocity in- 
terfaces). The interfaces divide the whole model into a number of blocks or layers 
(shown in Figure 1). 

  

  

      

FIG. 1. Macro model. 

Here, we replace constant velocity in each block by a linear function that is char- 

acterized by three parameters: 

Ai + Ao(z — 20) + A3(x — 2X0), 

where (29, 2) is a reference point. Thus, the velocity distribution is written in the 
form 

v(x, z) =s v9(z, z) + Mi + Ao(z _ 20) + A3(x - Lo); (12) 

where vp is a background velocity. An imaged depth depends on only the velocity 

above it, except for turning rays. Therefore, use of a recursive algorithm (layer 

stripping) is possible to determine velocity in an individual block. We start from 

the block nearest surface. For example, we choose the top left block in Figure 1. 
In each block, iteration is used to calculate velocity parameters. Given an initial 

guess for \;’s, prestack depth migration is implemented to obtain imaged depths and 

gi(z, h) in equation (10) for common image gathers that will give a correction of the 
parameters. Then by using the updated parameters as an initial guess, we correct 

the velocity again until convergence is achieved. After velocity analysis in one block, 
we migrate data with the corrected velocity, and pick the velocity interface from the 
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imaged structures. When velocity and velocity interface determining is finished in one 
block, we will repeat the same procedure to the next block that is located directly 
below the finished block. 

The layer-stripping procedure for velocity analysis can be stated as follows: 

e begin with the first block 

1. estimate velocity parameters iteratively 

(a) migrate with an initial guess of velocity; 

(b) sort the migrated data into common image gathers; 

(c) measure imaged depths and evaluate the derivative function; 

(d) update velocity by using the perturbation formula; 

2. image velocity interface by using corrected velocity 

e repeat step 1 and 2 for next block (recursion) 

When velocity and velocity gradients are estimated simultaneously in a given 
block, the iteration tends to be unstable. To overcome this difficulty, it is preferable 
to estimate velocity first. This estimation will yield an average velocity and give a 
better initial guess for the velocity gradients in this block. 

COMPUTER IMPLEMENTATION 

The Marmousi data set is generated by using a two-dimensional acoustic finite- 
difference modeling program. The model contains many reflectors, steep dips, and 
strong velocity variations in both lateral and vertical directions (with a minimum 
velocity of 1500 m/s and a maximum velocity of 5500 m/s), shown in Figure 2. The 
data set consists of 240 shots with 96 traces per shot. The initial offset is 200 m; both 
the shot and receiver spacings are 25 m. The first shot is at lateral position 3000 
m. Nineteen common-offset data gathers with offsets ranging from 200 m to 2000 m 
are used for velocity analysis. The selected offsets range from 200 m to 2000 m with 

spacing 100 m. The minimum-offset gather is shown in Figure 3. 

During the velocity analysis process, we assume that the velocity field is a macro 
model and that the velocity distribution is a linear function in each block. Veloc- 
ity analysis results surely depend the choice of migration algorithm used. There are 
two commonly used approaches to calculate traveltimes in Kirchhoff migration: finite 

differencing and ray tracing. Compared to ray tracing, the finite differencing ap- 
proach is easier to code and more efficient to implement, but fails to correctly image 

complicated structures when multiple arrivals exist (Geoltrain and Brac, 1993). 

A finite differencing traveltime solver is initially used in the migration implemen- 

tation for velocity analysis in the area where the first arrivals carry the major energy. 
The estimated velocity model is shown in Figure 4. In the central bottom parts, 
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a paraxial ray tracing algorithm is used to implement Kirchhoff migration. In this 
approach, the traveltime corresponding to the major energy is chosen when multiple 
arrivals exist. 

Using the Kirchhoff migration algorithm by paraxial ray tracing, velocity analysis 
is done through the central bottom parts of the Marmousi model. The updated 
velocity model, shown in Figure 5, consists of 19 blocks. In each block, the velocity 
distribution is a constant or linear function of the depth. Comparison of the estimated 
velocity model with the true one at three lateral locations is shown Figure 6. One can 
see that the estimated velocity matches the true model well except for thin layers. 
In fact, from sensitivity analysis (Liu, 1995), velocities in these thin layers cannot be 
determined well. The stacked migration section using the velocity model in Figure 5 
is shown in Figure 7. Compared to the migration result using the true velocity 
model, shown in Figure 8, Figure 7 gives an acceptable structural image even in the 
central bottom parts, which indicates the capability of this migration velocity analysis 
approach for handling complex structures. The subsurfaces are well imaged except 
for some detailed features in the central bottom parts. Some blurry image in the 
central bottom parts may be caused by missing high-velocity zones. Figure 2 shows 
that the true velocity model contains several small high-velocity zones in the central 
parts. These high-velocity zones do not appear in Figure 5 because of the limitations 
of velocity analysis and the resolution of migration imaging. 

Selected common image gathers from migrated data using the estimated model 
are shown in Figures 9, 10 and 11, representing the left, central and right parts of 
the model respectively. The alignment of reflections in Figures 9, 11 and the upper 
part of Figure 10 indicates the correctness of the estimated velocity in these areas. 

The bottom part of Figure 10 shows incoherent signals that limit the accuracy of 
velocity estimation in this particular area. Notice that, at the same common-image 

gathers (see Figure 12), migrated data using the true velocity also contain obvious 

incoherency in residual moveouts, although the stacked section shows a good image. 

This example demonstrates that for an extremely complex structure it is difficult to 
identify the correct velocity model based on the criterion of kinematic coherence. 

CONCLUSION 

Imaging complex structures (such as the Marmousi data) requires effective prestack 
depth migration algorithms as well as advanced velocity analysis techniques. The per- 
turbation method in this paper provides a useful tool for updating a velocity model by 
matching a criterion based on kinematic coherence of the prestack migrated images, 
which is one of the key elements in velocity model determination (Versteeg, 1994). In 
order to obtain a more satisfactory velocity analysis result for a complicated model, 

as Versteeg concluded, one also needs related geologic information as constraints.
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Fic. 2. The Marmousi velocity model. The darker shading denotes higher velocity. 
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Fic. 3. The minimum-offset Marmousi data. The offset is 200 meters.
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Fic. 4. The estimated velocity model using the first-arrival operater. 
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Fic. 5. The updated velocity model using the paraxial ray tracer. 
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Fic. 6. Comparison of the true velocity model with the estimated one. The dark 
curve denotes the true velocity and the gray denotes the estimated velocity. The top 

figure is at location x=8 km; the middle, at location x=6 km; the bottom, at location 
x=4 km. 
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FIG. 7. 19-offset stacked migration output for the Marmousi data. The input 
velocity is one in Figure 6. 
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Fic. 8. 19-offset stacked migration output for the Marmousi data. The true velocity 
is used. 
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Fic. 9. Ten common image gathers. 19 offsets in each CIG. The image location 
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Fic. 10. Ten common image gathers. 19 offsets in each CIG. The image location 

ranges from 6 km to 6.25 km. 
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Fic. 11. Ten common image gathers. 19 offsets in each CIG. The image location 
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Fic. 12. Ten common image gathers from migrated data using the true velocity. 

The image location ranges from 6 km to 6.25 km. 
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